File size: 3,898 Bytes
dbbfa01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4238f5
 
 
 
 
 
 
 
 
 
 
 
 
dbbfa01
 
 
 
 
 
 
 
 
 
d4238f5
2188fec
dbbfa01
 
 
 
 
2188fec
dbbfa01
 
 
 
 
 
9e21612
 
dbbfa01
b48f19a
 
 
ac2d9b2
dbbfa01
 
 
 
2188fec
27a71a3
2188fec
 
dbbfa01
 
2188fec
dbbfa01
 
 
 
bbd42cd
dbbfa01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from peft import PeftModel
import transformers
import gradio as gr

from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-1b1")

BASE_MODEL = "bigscience/bloom-1b1"
LORA_WEIGHTS = "naot97/bloom1b1-zalo-test"

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = AutoModelForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = AutoModelForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )


# def generate_prompt(instruction, input=None):
#     if input:
#         return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# ### Instruction:
# {instruction}
# ### Input:
# {input}
# ### Response:"""
#     else:
#         return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# ### Instruction:
# {instruction}
# ### Response:"""

if device != "cpu":
    model.half()
model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)


def evaluate(
    instruction,
    **kwargs,
):
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    prompt = instruction
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.cuda.amp.autocast():
        output_tokens = model.generate(**inputs, generation_config=generation_config)
    output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
    return output[len(input_ids):]


g = gr.Interface(
    fn=evaluate,
    inputs= gr.components.Textbox(
            lines=2, label="Instruction", placeholder="Tell me raw text."
    ),
    outputs= gr.inputs.Textbox(
            lines=5,
            label="Output",
    ),
    title="bloom 1b1",
    description="",
)
g.queue(concurrency_count=1)
g.launch()

# Old testing code follows.

"""
if __name__ == "__main__":
    # testing code for readme
    for instruction in [
        "Tell me about alpacas.",
        "Tell me about the president of Mexico in 2019.",
        "Tell me about the king of France in 2019.",
        "List all Canadian provinces in alphabetical order.",
        "Write a Python program that prints the first 10 Fibonacci numbers.",
        "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
        "Tell me five words that rhyme with 'shock'.",
        "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
        "Count up from 1 to 500.",
    ]:
        print("Instruction:", instruction)
        print("Response:", evaluate(instruction))
        print()
"""