File size: 8,110 Bytes
5d0a311
 
 
 
 
b1aa3b5
5d0a311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1aa3b5
5d0a311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1aa3b5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import enum
import subprocess
import spacy
import pyinflect
from difflib import ndiff
from typing import List, Union, Tuple, Dict

# BES	auxiliary “be”		Let it **be**.
# HVS	forms of “have”		I**’ve** seen the Queen
# MD	verb, modal auxiliary	VerbType=mod	This **could** work.
# VB	verb, base form	VerbForm=inf	I want to **go**.
# VBD	verb, past tense	VerbForm=fin Tense=past	This **was** a sentence.
# VBG	verb, gerund or present participle	VerbForm=part Tense=pres Aspect=prog	I am **going**.
# VBN	verb, past participle	VerbForm=part Tense=past Aspect=perf	The treasure was **lost**.
# VBP	verb, non-3rd person singular present	VerbForm=fin Tense=pres	I **want** to go.
# VBZ	verb, 3rd person singular present	VerbForm=fin Tense=pres Number=sing Person=3	He **wants** to go.

class APVoice:
    class Tense(enum.Enum):
        simple_present  = {
            'aux':[None,'VBZ'], 
            'main':['VBZ','VBP', 'VB'], 
            'tobe':{'NN':'is{}','NNS':'are{}'}
        }
        simple_past     = {
            'aux':[None, 'VBD'], 
            'main':['VBD', 'VB'], 
            'tobe':{'NN':'was{}','NNS':'were{}'}
        }
        future_simple   = {
            'aux':['MD'], 
            'main':['VB'], 
            'tobe':{'NN':'will{} be','NNS':'will{} be'}
        }
        present_cont    = {
            'aux':['VBP','VBZ'],
            'main':['VBG'], 
            'tobe':{'NN':'is{} being','NNS':'are{} being'}
        }
        past_cont       = {
            'aux':['VBD'],
            'main':['VBG'], 
            'tobe':{'NN':'was{} being','NNS':'were{} being'}
        }
        present_perfect = {
            'aux':['VBP','VBZ'],
            'main':['VBN'], 
            'tobe':{'NN':'has{} been','NNS':'have{} been'}
        }

    def __init__(
        self
    ) -> None:

        self.parser = None
        self.__init_parser(model="en_core_web_sm")

    def __init_parser(
        self,
        model: str
    ) -> None:

        self.parser = None
        try:
            self.parser = spacy.load(model)
        except:
            print(f"* Downloading {model} model...")
            _ = subprocess.Popen(
                f"python -m spacy download {model}", 
                stdout=subprocess.PIPE, 
                shell=True).communicate()

            self.parser = spacy.load(model)

    def verb2participle(
        self,
        verb: str
    ) -> str:

        tk = self.parser(verb)[0]
        return tk._.inflect('VBN')
    
    def subjp2objp(
        self,
        pronoun: str
    ) -> str:
        """
        Convert Subject pronouns to Object pronouns.
        """
        mapping = {"i":"me","you":"you","we":"us","they":"them","he":"him","she":"her", "it":"it"}
        return mapping.get(pronoun.lower(), None)

    def get_gramatical_number(
        self,
        dobj_data: List[List[Tuple[str,str,str]]]
    ) -> Union[str, None]:

        result = [tag for _,dep,tag in dobj_data if dep == 'dobj']
        if len(result) == 0:
            result = None
        else:
            result = result[0].replace('NNP', 'NN')

        return result
    
    def get_verbal_tense(
        self,
        verb_data: List[List[Tuple[str,str,str,int]]]
    ) -> Union[str, None]:
        
        aux, neg, root = verb_data

        root = root[0][2] if len(root) > 0 else None
        aux = aux[0][2] if len(aux) > 0 else None

        tense_name = None
        for tense in self.Tense:
            if aux in tense.value['aux'] and root in tense.value['main']:
                tense_name = tense.name
                break
        
        return tense_name

    def get_subj(
        self,
        sentence: str,
    ) -> Tuple[ List[Tuple[str,str,str]], str]:

        out_data = []
        for tk in self.parser(sentence):
            if "subj" in tk.dep_:
                out_data = [(t,t.dep_,t.tag_) for t in tk.subtree]
                break
        
        out_str = ' '.join([t.text for t,_,_ in out_data])
        return out_data, out_str
    
    def get_verb(
        self,
        sentence: str,
    ) -> Tuple[ List[List[Tuple[str,str,str,int]]], str]:

        main_data = []
        aux_data = []
        neg_data = []
        out_data = []

        for tk in self.parser(sentence):
            if "ROOT" in tk.dep_:
                main_data = [ (tk,tk.dep_,tk.tag_,tk.i)]
                aux_data = [(t,t.dep_,t.tag_,t.i) for t in tk.children if t.dep_ == "aux"]
                neg_data = [(t,t.dep_,t.tag_,t.i) for t in tk.children if t.dep_ == "neg"]
                out_data = [aux_data, neg_data, main_data]
                break

        out_str = sorted([tup for list_ in out_data for tup in list_], key=lambda x: x[3])
        out_str = ' '.join([t.text for t,_,_,_ in out_str])
        return out_data, out_str

    def get_dobj(
        self,
        sentence: str,
    ) -> Tuple[ List[Tuple[str,str,str]], str]:

        out_data = []
        for tk in self.parser(sentence):
            if "dobj" in tk.dep_:
                out_data = [(t,t.dep_,t.tag_)for t in tk.subtree]
                break

        out_str = ' '.join([t.text for t,_,_ in out_data])
        return out_data, out_str

    def get_complement(
        self,
        subj: str,
        verb: str,
        dobj: str,
        full_sentence: str,
    ) -> str:
        
        concat_sentence = subj + ' ' + verb + ' ' + dobj
        diff = ""  
        for tk in ndiff(concat_sentence.split(), full_sentence.split()):
            mark, word = tk[0], tk[2:]
            if mark == '+':
                diff += word + " "
        
        return diff.strip()

    def active2passive(
        self, 
        active_sentence: str, 
        debug: bool=False
    ) -> Dict[str, str]:

        active_sentence = active_sentence.strip()
        if active_sentence == "":
            raise RuntimeError(
                    f"Error: The sentence does not be empty!"
                )

        subj_data, subj_str = self.get_subj(active_sentence)
        if debug: print(subj_data)
        if subj_str == "":
            raise RuntimeError(
                f"Error: The sentence's subject has not been found or the sentence does not be the correct format!"
            )

        verb_data, verb_str = self.get_verb(active_sentence)
        if debug: print(verb_data)
        if verb_str == "":
            raise RuntimeError(
                f"Error: The sentence's verb has not been found or the sentence does not be the correct format!"
            )
        
        dobj_data, dobj_str = self.get_dobj(active_sentence)
        if debug: print(dobj_data)
        if dobj_str == "":
            raise RuntimeError(
                f"Error: The sentence's direct object has not been found or the sentence does not be the correct format!"
            )

        complement = self.get_complement(subj_str, verb_str, dobj_str, active_sentence)

        # Get pasive subject
        p_subj = dobj_str

        # Get tense + participle verb
        verbal_tense = self.get_verbal_tense(verb_data)
        if debug: print(verbal_tense)
        if verbal_tense is None:
            raise RuntimeError(
                f"Error: The sentence does not be the correct format or the verbal tense has not been implemented yet!"
            ) 

        _, neg_data, main_data = verb_data
        neg = " not" if len(neg_data) > 0 else ""
        gramatical_number = self.get_gramatical_number(dobj_data)
        if debug: print(gramatical_number)
        p_tobe = self.Tense[verbal_tense].value['tobe'][gramatical_number].format(neg)
        p_verb = self.verb2participle(main_data[0][0].text)

        # Convert active_object to pasive_agent
        p_agent = "by "
        for tk,_,tag in subj_data:
            word = tk.text
            if tag == 'PRP':
                word = self.subjp2objp(word)
            p_agent += word + " "

        return {
            'subject': p_subj.capitalize(),
            'tobe':p_tobe, 
            'participle': p_verb, 
            'agent': p_agent[0].lower() + p_agent[1:].strip(),
            'complement':complement
        }