File size: 8,077 Bytes
f799d96 b0a48de 6802355 b0a48de 6802355 4808241 48858f9 6802355 48858f9 4808241 b0a48de 6802355 b0a48de 6802355 b0a48de 6802355 b0a48de 7c07d74 b0a48de e16c706 782d7ee b0a48de 7c07d74 b0a48de 7cb8f79 b0a48de 6802355 b0a48de 3d8c5e9 9a26245 3d8c5e9 9a26245 b0a48de 4808241 b0a48de 6802355 b0a48de 48858f9 b0a48de 782d7ee b0a48de 6802355 b0a48de 6802355 f799d96 6802355 987b643 6802355 987b643 6802355 f799d96 6802355 f799d96 6802355 48858f9 6802355 f799d96 6802355 f799d96 6802355 2b3efbb f799d96 6802355 f799d96 48858f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
import cv2
import os
import tempfile
import numpy as np
from utils import *
from algorithm import *
import time
def make_video(video_path, outdir='./summarized_video', algorithm='Offline (KMeans)', ratio=15, threshold_type='Average'):
if algorithm not in ["Offline (KMeans)", "Online (Sum of Squared Difference)"]:
algorithm = "Offline (KMeans)"
if threshold_type not in ["Small", "Average", "Large"]:
threshold_type = "Average"
if threshold_type == "Small":
threshold = 100
elif threshold_type == "Average":
threshold = 400
else:
threshold = 800
# nen them vao cac truong hop mo hinh khac
model, processor, device = load_model()
# total_params = sum(param.numel() for param in model.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
for k, filename in enumerate(filenames):
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
frame_count = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
duration_seconds = frame_count / frame_rate
width = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
#length = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
start_time = time.time()
filename = os.path.basename(filename)
in_width = width
in_height = height
# Find the size to resize
if "shortest_edge" in processor.size:
height = width = processor.size["shortest_edge"]
else:
height = processor.size["height"]
width = processor.size["width"]
resize_to = (height, width)
# F/Fs
clip_sample_rate = 1
# F
num_frames = 8
original_frames = []
frames = []
features = []
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
output_path = tmpfile.name
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
# use the original frames to write the output video if you want
#original_frames.append(raw_frame)
raw_frame = cv2.resize(raw_frame, resize_to)
# use the resized frames to extract features
frames.append(raw_frame)
# Find key frames by selecting frames with clip_sample_rate
key_frames = frames[::clip_sample_rate]
#print('total of frames after sample:', len(selected_frames))
# Remove redundant frames to make the number of frames can be divided by num_frames
num_redudant_frames = len(key_frames) - (len(key_frames) % num_frames)
# Final key frames
final_key_frames = key_frames[:num_redudant_frames]
#print('total of frames after remove redundant frames:', len(selected_frames))
for i in range(0, len(final_key_frames), num_frames):
if i % num_frames*50 == 0:
print(f"Loading {i}/{len(final_key_frames)}")
# Input clip to the model
input_frames = final_key_frames[i:i+num_frames]
# Extract features
batch_features = extract_features(input_frames, device, model, processor)
# Convert to numpy array to decrease the memory usage
batch_features = np.array(batch_features.cpu().detach().numpy())
features.extend(batch_features)
number_of_clusters = round(len(features)*ratio/100)
print("Total of frames: ", len(final_key_frames))
print("Shape of each frame: ", frames[0].shape)
print("Total of clips: ", len(features))
print("Shape of each clip: ", features[0].shape)
selected_frames = []
if algorithm == "Offline (KMeans)":
selected_frames = offline(number_of_clusters, features)
else:
selected_frames = online(features, threshold, ratio)
print("Selected frame: ", selected_frames)
video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), frame_rate, (frames[0].shape[1], frames[0].shape[0]))
for idx in selected_frames:
video_writer.write(frames[idx])
# video_writer.write(original_frames[idx]) if you want to write the original frames
out_duration_seconds = len(selected_frames) / frame_rate
out_width = frames[0].shape[1]
out_height = frames[0].shape[0]
raw_video.release()
video_writer.release()
print("Completed summarizing the video (wait for a moment to load).")
end_time = time.time()
process_time = round(end_time - start_time, 2)
return output_path, duration_seconds, frame_rate, f"{in_width} x {in_height}", process_time, out_duration_seconds, frame_rate, f"{out_width} x {out_height}"
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
_HEADER_ = '''
<h2><b>Video summarization 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/youneedyourself/Video-Summarization_Timesformer target='_blank'><b>Video Summarization Using Timesformer Modal and K-means, SSD</b></a></h2>
Code: <a href='https://github.com/youneedyourself/Video-Summarization_Timesformer' target='_blank'>GitHub</a>.
Author: Nguyen Hoai Nam.
'''
with gr.Blocks(css=css) as demo:
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video (Required Duration > 5s)")
with gr.Column():
# Thêm thông tin về video
algorithm_type = gr.Dropdown(["Offline (KMeans)", "Online (Sum of Squared Difference)"], type="value", label='Algorithm')
ratio = gr.Slider(15, 80, label="Summarization Ratio (%) (Recommend: 15)")
threshold = gr.Dropdown(["Small", "Average", "Large"], type="value", label='Difference Threshold for Online Algorithm (Recommend: Average)')
submit = gr.Button("Summarize")
with gr.Row():
processed_video = gr.Video(label="Summarized Video")
with gr.Column():
input_video_duration = gr.Text(label="Input Video Duration (s)")
input_video_FPS = gr.Text(label="Input Video FPS")
input_video_resolution = gr.Text(label="Input Video Resolution")
time_process = gr.Text(label="Time Process (s)")
with gr.Column():
output_video_duration = gr.Text(label="Output Video Duration (s)")
output_video_FPS = gr.Text(label="Output Video FPS")
output_video_resolution = gr.Text(label="Output Video Resolution")
def on_submit(uploaded_video, algorithm_type, ratio, threshold):
print("Ratio:", ratio)
print("Algorithm:", algorithm_type)
print("Threshold:", threshold)
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video, algorithm=algorithm_type, ratio=ratio, threshold_type=threshold)
return output_video_path
submit.click(on_submit, inputs=[input_video, algorithm_type, ratio, threshold], outputs=[processed_video, input_video_duration, input_video_FPS, input_video_resolution, time_process, output_video_duration, output_video_FPS, output_video_resolution])
if __name__ == '__main__':
demo.queue().launch(share=True) |