File size: 8,077 Bytes
f799d96
 
 
b0a48de
 
 
 
6802355
b0a48de
6802355
4808241
 
48858f9
6802355
 
 
 
 
 
 
 
 
 
 
48858f9
4808241
b0a48de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6802355
 
 
 
b0a48de
6802355
b0a48de
6802355
 
b0a48de
 
 
 
 
 
 
 
 
 
 
 
7c07d74
 
b0a48de
 
 
 
 
 
 
 
 
 
 
e16c706
782d7ee
b0a48de
7c07d74
b0a48de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cb8f79
 
 
 
 
 
 
b0a48de
6802355
b0a48de
3d8c5e9
9a26245
3d8c5e9
 
9a26245
b0a48de
4808241
 
b0a48de
6802355
b0a48de
48858f9
 
b0a48de
 
782d7ee
 
b0a48de
6802355
 
 
 
b0a48de
 
 
6802355
 
 
f799d96
 
 
 
 
 
 
 
 
 
 
 
 
6802355
 
987b643
6802355
987b643
6802355
f799d96
 
6802355
f799d96
 
6802355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48858f9
6802355
 
 
 
f799d96
6802355
 
 
 
f799d96
6802355
2b3efbb
f799d96
6802355
f799d96
 
48858f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import cv2
import os
import tempfile
import numpy as np
from utils import *
from algorithm import *
import time

def make_video(video_path, outdir='./summarized_video', algorithm='Offline (KMeans)', ratio=15, threshold_type='Average'):
    if algorithm not in ["Offline (KMeans)", "Online (Sum of Squared Difference)"]:
        algorithm = "Offline (KMeans)"
    
    if threshold_type not in ["Small", "Average", "Large"]:
        threshold_type = "Average"
    
    if threshold_type == "Small":
        threshold = 100
    elif threshold_type == "Average":
        threshold = 400
    else:
        threshold = 800


    # nen them vao cac truong hop mo hinh khac
    model, processor, device = load_model()

    # total_params = sum(param.numel() for param in model.parameters())
    # print('Total parameters: {:.2f}M'.format(total_params / 1e6))

    if os.path.isfile(video_path):
        if video_path.endswith('txt'):
            with open(video_path, 'r') as f:
                lines = f.read().splitlines()
        else:
            filenames = [video_path]
    else:
        filenames = os.listdir(video_path)
        filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
        filenames.sort()
    
    for k, filename in enumerate(filenames):
        print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
        
        raw_video = cv2.VideoCapture(filename)
        frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
        frame_count = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
        duration_seconds = frame_count / frame_rate
        width = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        #length = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
        start_time = time.time()
        filename = os.path.basename(filename)
        in_width = width
        in_height = height
        # Find the size to resize
        if "shortest_edge" in processor.size:
            height = width = processor.size["shortest_edge"]
        else:
            height = processor.size["height"]
            width = processor.size["width"] 
        resize_to = (height, width)

        # F/Fs
        clip_sample_rate = 1
        # F
        num_frames = 8
        
        original_frames = []
        frames = []
        features = []

        with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
            output_path = tmpfile.name
        
        while raw_video.isOpened():
            ret, raw_frame = raw_video.read()
            if not ret:
                break
            
            # use the original frames to write the output video if you want
            #original_frames.append(raw_frame)
            raw_frame = cv2.resize(raw_frame, resize_to)
            # use the resized frames to extract features
            frames.append(raw_frame)

        # Find key frames by selecting frames with clip_sample_rate
        key_frames = frames[::clip_sample_rate] 
        #print('total of frames after sample:', len(selected_frames))

        # Remove redundant frames to make the number of frames can be divided by num_frames
        num_redudant_frames = len(key_frames) - (len(key_frames) % num_frames)

        # Final key frames
        final_key_frames = key_frames[:num_redudant_frames]
        #print('total of frames after remove redundant frames:', len(selected_frames))

        for i in range(0, len(final_key_frames), num_frames):
            if i % num_frames*50 == 0:
                print(f"Loading {i}/{len(final_key_frames)}")
        
            # Input clip to the model
            input_frames = final_key_frames[i:i+num_frames]
            # Extract features
            batch_features = extract_features(input_frames, device, model, processor)
            # Convert to numpy array to decrease the memory usage
            batch_features = np.array(batch_features.cpu().detach().numpy())
            features.extend(batch_features)

        number_of_clusters = round(len(features)*ratio/100)

        print("Total of frames: ", len(final_key_frames))
        print("Shape of each frame: ", frames[0].shape)
        print("Total of clips: ", len(features))
        print("Shape of each clip: ", features[0].shape)

        selected_frames = []
        if algorithm == "Offline (KMeans)":
            selected_frames = offline(number_of_clusters, features)
        else:
            selected_frames = online(features, threshold, ratio)

        print("Selected frame: ", selected_frames)
        
        video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), frame_rate, (frames[0].shape[1], frames[0].shape[0]))
        for idx in selected_frames:
            video_writer.write(frames[idx])
            # video_writer.write(original_frames[idx]) if you want to write the original frames
        
        out_duration_seconds = len(selected_frames) / frame_rate
        out_width = frames[0].shape[1]
        out_height = frames[0].shape[0]

        raw_video.release()
        video_writer.release()
        print("Completed summarizing the video (wait for a moment to load).")
        end_time = time.time()
        process_time = round(end_time - start_time, 2)
        return output_path, duration_seconds, frame_rate, f"{in_width} x {in_height}", process_time, out_duration_seconds, frame_rate, f"{out_width} x {out_height}"

css = """
#img-display-container {
    max-height: 100vh;
    }
#img-display-input {
    max-height: 80vh;
    }
#img-display-output {
    max-height: 80vh;
    }
"""

_HEADER_ = '''
<h2><b>Video summarization 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/youneedyourself/Video-Summarization_Timesformer target='_blank'><b>Video Summarization Using Timesformer Modal and K-means, SSD</b></a></h2>

Code: <a href='https://github.com/youneedyourself/Video-Summarization_Timesformer' target='_blank'>GitHub</a>.
Author: Nguyen Hoai Nam.
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown(_HEADER_)

    with gr.Row():
        with gr.Column():
            input_video = gr.Video(label="Input Video (Required Duration > 5s)")
        with gr.Column():
            # Thêm thông tin về video
            algorithm_type = gr.Dropdown(["Offline (KMeans)", "Online (Sum of Squared Difference)"], type="value", label='Algorithm')
            ratio = gr.Slider(15, 80, label="Summarization Ratio (%) (Recommend: 15)")
            threshold = gr.Dropdown(["Small", "Average", "Large"], type="value", label='Difference Threshold for Online Algorithm (Recommend: Average)')
            submit = gr.Button("Summarize")
    with gr.Row():      
        processed_video = gr.Video(label="Summarized Video")
        with gr.Column():
            input_video_duration = gr.Text(label="Input Video Duration (s)")
            input_video_FPS = gr.Text(label="Input Video FPS")
            input_video_resolution = gr.Text(label="Input Video Resolution")
        
        time_process = gr.Text(label="Time Process (s)")

        with gr.Column():
            output_video_duration = gr.Text(label="Output Video Duration (s)")
            output_video_FPS = gr.Text(label="Output Video FPS")
            output_video_resolution = gr.Text(label="Output Video Resolution")

    def on_submit(uploaded_video, algorithm_type, ratio, threshold):
        print("Ratio:", ratio)
        print("Algorithm:", algorithm_type)
        print("Threshold:", threshold)
        # Process the video and get the path of the output video
        output_video_path = make_video(uploaded_video, algorithm=algorithm_type, ratio=ratio, threshold_type=threshold)
        return output_video_path

    submit.click(on_submit, inputs=[input_video, algorithm_type, ratio, threshold], outputs=[processed_video, input_video_duration, input_video_FPS, input_video_resolution, time_process, output_video_duration, output_video_FPS, output_video_resolution])

if __name__ == '__main__':
    demo.queue().launch(share=True)