File size: 4,151 Bytes
161d647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241747c
 
161d647
 
 
 
 
 
 
 
4523071
 
 
241747c
161d647
 
 
 
 
 
 
4523071
161d647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241747c
161d647
 
 
241747c
 
 
 
 
161d647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241747c
161d647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import subprocess
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

#if os.environ.get('SYSTEM') == 'spaces':
#    subprocess.call('git apply ../patch'.split(), cwd='stylegan2-pytorch')

sys.path.insert(0, 'stylegan2-pytorch')

from model import Generator

TITLE = 'TADNE (This Anime Does Not Exist)'
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/.
The model used here is the one converted from the model provided in [this site](https://www.gwern.net/Faces) using [this repo](https://github.com/rosinality/stylegan2-pytorch).

Expected execution time on Hugging Face Spaces: 4s

Based off of [hysts/TADNE](https://huggingface.co/spaces/hysts/TADNE)
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/TADNE/resolve/main/samples'
ARTICLE = f'''## Generated images
- size: 512x512
- truncation: 0.7
- seed: 0-99
![samples]({SAMPLE_IMAGE_DIR}/sample.jpg)

'''

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def load_model(device: torch.device) -> nn.Module:
    model = Generator(512, 1024, 4, channel_multiplier=2)
    path = hf_hub_download('hysts/TADNE',
                           'models/aydao-anime-danbooru2019s-512-5268480.pt',
                           use_auth_token=TOKEN)
    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint['g_ema'])
    model.eval()
    model.to(device)
    model.latent_avg = checkpoint['latent_avg'].to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.style_dim)).to(device)
        model([z], truncation=0.7, truncation_latent=model.latent_avg)
    return model


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, z_dim)).to(device).float()


@torch.inference_mode()
def generate_image(seed: str, truncation_psi: float, randomize_noise: bool,
                   model: nn.Module, device: torch.device) -> np.ndarray:
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))

    arr=bytearray.fromhex(seed[2:])
    z = np.random.RandomState(arr).randn(n_sample, inputSize).astype("float32")

    #z = generate_z(model.style_dim, seed, device)
    
    out, _ = model([z],
                   truncation=truncation_psi,
                   truncation_latent=model.latent_avg,
                   randomize_noise=randomize_noise)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


def main():
    args = parse_args()
    device = torch.device(args.device)

    model = load_model(device)

    func = functools.partial(generate_image, model=model, device=device)
    func = functools.update_wrapper(func, generate_image)

    gr.Interface(
        func,
        [
            gr.inputs.String(default="0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984", label='Seed'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi'),
            gr.inputs.Checkbox(default=False, label='Randomize Noise'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()