File size: 7,228 Bytes
0c696ac
4c68c58
 
 
4ee9eee
0c696ac
aa35052
1da0e2a
 
 
 
 
4c68c58
 
 
a72960c
 
4c68c58
 
 
 
 
 
 
 
 
 
0c696ac
 
 
 
 
 
 
 
 
 
66f7296
 
0c696ac
 
8f115fa
833c8dd
0c696ac
 
7033da3
 
d137e2d
7033da3
d137e2d
7033da3
 
78317e6
7033da3
d137e2d
7033da3
d137e2d
7033da3
 
0c696ac
 
833c8dd
4c68c58
833c8dd
84519dc
 
7033da3
4c68c58
 
 
 
 
 
ecbc1ab
4c68c58
a72960c
 
4c68c58
 
7033da3
 
 
 
d137e2d
7033da3
 
4c68c58
7033da3
 
 
 
c5a683f
 
7033da3
c5a683f
 
7033da3
 
 
 
 
 
 
 
 
 
4c68c58
ecbc1ab
 
e457e19
7033da3
e457e19
 
 
7033da3
4c68c58
 
5916805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23f68f1
d57bf64
 
 
5916805
156d86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da0e2a
 
 
 
 
 
 
 
156d86f
 
4c68c58
 
 
e457e19
4c68c58
e457e19
 
 
33f9fc8
b12ef9e
 
4c68c58
40e5857
4c68c58
40e5857
ace7020
5916805
f607082
40e5857
 
833c8dd
 
 
 
4c68c58
40e5857
7033da3
40e5857
4c68c58
833c8dd
7033da3
 
156d86f
4c68c58
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from asyncio import constants
import gradio as gr
import requests
import os 
import re
import random
from words import *
from base64 import b64decode
from PIL import Image
import io
import numpy as np


# GPT-J-6B API
API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B"
#HF_TOKEN = os.environ["HF_TOKEN"]
#headers = {"Authorization": f"Bearer {HF_TOKEN}"}

prompt = """

Bilbo is a hobbit rogue who wears a brown cloak and carries a ring.



Bremen is a human wizard, he wears a blue robe and carries a wand.

"""

examples = [["river"], ["night"], ["trees"],["table"],["laughs"]]


def npc_randomize():
    #name is a random combination of syllables
    name =""
    for i in range(random.randint(2,4)):
        name += random.choice(constants)
        name += random.choice(vowels)
        if random.random()<0.5:
            name += random.choice(constants)
        if random.random()<0.1:
            name += random.choice(seperators)
    #capitalize first letter
    name = name[0].upper() + name[1:]
    race=random.choice(races)
    characterClass=random.choice(classes)
    pronoun=random.choices(["he","she","they"],weights=[0.45,0.45,0.1],k=1)[0]
    return name,race,characterClass,pronoun


def genericDescription():
    
    desc=" wears a {color} {outfit}".format(color=random.choice(colors),outfit=random.choice(outfits))
    if random.random()<0.5:
        desc+=" and a {color} {outfit}".format(color=random.choice(colors),outfit=random.choice(outfits))
    
    if random.random()<0.5:
        desc+=" and carries a {weapon}".format(weapon=random.choice(weapons))
    elif random.random()<0.5:
        desc+=" and carries a {weapon} and a {object}".format(weapon=random.choice(weapons),object=random.choice(objects))
    else:
        desc+=" and carries two {weapon}s".format(weapon=random.choice(weapons))
        
    return desc


def npc_generate(name,race,characterClass,pronoun):

  desc="{name} is a {race} {characterClass}, {pronoun}".format(name=name,race=race,characterClass=characterClass,pronoun=pronoun)

  p = prompt + "\n"+desc
  print(f"*****Inside desc_generate - Prompt is :{p}")
  json_ = {"inputs": p,
            "parameters":
            {
            "top_p": 0.9,
          "temperature": 1.1,
          "max_new_tokens": 50,
          "return_full_text": False,
          }}
  #response = requests.post(API_URL, headers=headers, json=json_)
  response = requests.post(API_URL, json=json_)
  output = response.json()
  print(f"If there was an error? Reason is : {output}")


  #error handling
  if "error" in output:
    print("using fallback description method!")
    #fallback method
    longDescription=genericDescription()
  else:
    output_tmp = output[0]['generated_text']
    print(f"GPTJ response without splits is: {output_tmp}")
    if "\n\n" not in output_tmp:
        if output_tmp.find('.') != -1:
            idx = output_tmp.find('.')
            longDescription = output_tmp[:idx+1]
        else:
            idx = output_tmp.rfind('\n')
            longDescription = output_tmp[:idx]
    else:
        longDescription = output_tmp.split("\n\n")[0] # +"."
    longDescription = longDescription.replace('?','')
    print(f"longDescription being returned is: {longDescription}")
  return desc+longDescription

def desc_to_image(desc):
  print("*****Inside desc_to_image")
  desc = " ".join(desc.split('\n'))
  desc = desc + ", character art, concept art, artstation"
  steps, width, height, images, diversity = '50','256','256','1',15
  iface = gr.Interface.load("spaces/multimodalart/latentdiffusion")
  print("about to die",iface,dir(iface))

  prompt = re.sub(r'[^a-zA-Z0-9 ,.]', '', desc)
  print("about to die",prompt)


  img=iface(desc, steps, width, height, images, diversity)[0]
  return img

def desc_to_image_dalle(desc):
  print("*****Inside desc_to_image")
  desc = " ".join(desc.split('\n'))
  desc = desc + ", character art, concept art, artstation"
  steps, width, height, images, diversity = '50','256','256','1',15
  #iface = gr.Interface.load("huggingface/flax-community/dalle-mini")#this isn't a real interface
  iface = gr.Interface.load("spaces/multimodalart/rudalle")
  print("about to die",iface,dir(iface))

  prompt = re.sub(r'[^a-zA-Z0-9 ,.]', '', desc)
  print("about to die",prompt)

  model='Realism'
  aspect_ratio = 'Square'


  #img=iface(desc,model,aspect_ratio)[0]
  result=iface(desc,"Square","Realism")
  print(f"result is: {result}")
  return result[0]


def desc_to_image_cf(desc):
  cf = gr.Interface.load("spaces/Gradio-Blocks/clip-guided-faces")

  print("about to die",cf)

  text=desc
  init_image=None 
  skip_timesteps=0
  clip_guidance_scale=600
  tv_scale=0
  range_scale=0
  init_scale=0
  seed=0
  image_prompts=None
  timestep_respacing= 25
  cutn=16
  im_prompt_weight =1
  result = cf.fns[0].fn(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompts,timestep_respacing, cutn, im_prompt_weight)
  

  #convert result from dataurl to image
  img=result[0]
  header, encoded = img.split(",", 1)
  data = b64decode(encoded)
  image = Image.open(io.BytesIO(data))
  image_np = np.array(image)
  return image_np


demo = gr.Blocks()

with demo:
  gr.Markdown("<h1><center>NPC Generator</center></h1>")
  gr.Markdown(
        "based on <a href=https://huggingface.co/spaces/Gradio-Blocks/GPTJ6B_Poetry_LatentDiff_Illustration> Gradio poetry generator</a>."
        "<div>first input name, race and class (or generate them randomly)</div>"
        "<div>Next, use GPT-J to generate a short description</div>"
        "<div>Finally, Generate an illustration 🎨 provided by <a href=https://huggingface.co/spaces/multimodalart/latentdiffusion>Latent Diffusion model</a>.</div>"
        #"<div>Or using <a href=https://huggingface.co/spaces/multimodalart/rudalle> Rudalle model</a>.</div>"
        "<div>Or using <a href=https://huggingface.co/spaces/Gradio-Blocks/clip-guided-faces> clip-guides faces</a>.</div>"
    )
  
  with gr.Row():
    b0 = gr.Button("Randomize name,race and class")
    b1 = gr.Button("Generate NPC Description")
    b2 = gr.Button("Generate Portrait (latent diffusion)")
    b3 = gr.Button("Generate Portrait (clip-faces)")
  
  with gr.Row():  
    input_name = gr.Textbox(label="name",placeholder="Drizzt")
    input_race = gr.Textbox(label="race",placeholder="dark elf")
    input_class = gr.Textbox(label="class",placeholder="ranger")
    input_pronoun = gr.Textbox(label="pronoun",placeholder="he")

  with gr.Row():
    desc_txt = gr.Textbox(label="description",lines=7)
    output_image = gr.Image(label="portrait",type="filepath", shape=(256,256))
  
  b0.click(npc_randomize,inputs=[],outputs=[input_name,input_race,input_class,input_pronoun])
  b1.click(npc_generate, inputs=[ input_name,input_race,input_class,input_pronoun], outputs=desc_txt)
  b2.click(desc_to_image, desc_txt, output_image)
  b3.click(desc_to_image_cf, desc_txt, output_image)
  #examples=examples

demo.launch(enable_queue=True, debug=True)