File size: 6,346 Bytes
d096445
 
 
 
5d39f28
164f777
c6a81f6
a447492
d096445
 
164f777
 
c6a81f6
a447492
164f777
 
 
 
c6a81f6
a447492
164f777
 
 
 
c6a81f6
a447492
164f777
 
 
 
c6a81f6
a447492
164f777
 
5a9e237
 
c6a81f6
a447492
de4c768
164f777
c6a81f6
 
 
7b077a3
164f777
 
 
c6a81f6
 
a447492
164f777
 
c6a81f6
 
 
a447492
d096445
 
 
aa565a5
da67542
 
 
aa565a5
 
e18e8e2
ec25ef6
1e547fd
ec25ef6
 
 
 
cec477c
 
 
 
 
 
 
586b631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec477c
 
5d39f28
d9d145c
 
 
 
 
 
 
5d39f28
d096445
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
{
    "models": {
        
        "sd-dreambooth-library/solo-levelling-art-style": {
            "use_safetensors": false,
            "description": "see https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style",
            "scheduler": "DDIMScheduler",
            "trigger_token": ""
        },
        "CompVis/stable-diffusion-v1-4": {
            "use_safetensors": true,
            "description": "see https://huggingface.co/CompVis/stable-diffusion-v1-4",
            "scheduler": "EulerDiscreteScheduler",
            "trigger_token": ""
        },
        "runwayml/stable-diffusion-v1-5": {
            "use_safetensors": true,
            "description": "see https://huggingface.co/runwayml/stable-diffusion-v1-5",
            "scheduler": "DDPMScheduler",
            "trigger_token": ""
        },
        "stabilityai/stable-diffusion-2-1": {
            "use_safetensors": true,
            "description": "see https://huggingface.co/stabilityai/stable-diffusion-2-1",
            "scheduler": "DPMSolverMultistepScheduler",
            "trigger_token": ""
        },
        "stabilityai/stable-diffusion-xl-base-1.0": {
            "use_safetensors": true,
            "description": "see https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
            "scheduler": "DDPMScheduler",
            "trigger_token": ""
        },
        "sd-dreambooth-library/house-emblem": {
            "use_safetensors": false,
            "description": "see https://huggingface.co/sd-dreambooth-library/house-emblem",
            "scheduler": "DDPMScheduler",
            "trigger_token": ""
        },  
        "Envvi/Inkpunk-Diffusion": {
            "use_safetensors": false,
            "description": "see https://huggingface.co/Envvi/Inkpunk-Diffusion",
            "scheduler": "DDPMScheduler",
            "trigger_token": "nvinkpunk"
        },
        "Stelath/textual_inversion_comic_strip_fp16": {
            "use_safetensors": true,
            "description": "see https://huggingface.co/Stelath/textual_inversion_comic_strip_fp16",
            "scheduler": "DDPMScheduler",
            "trigger_token": ""
        },
        "sd-dreambooth-library/herge-style": {
            "use_safetensors": false,
            "description": "see https://huggingface.co/sd-dreambooth-library/herge-style",
            "scheduler": "DDPMScheduler",
            "trigger_token": "herge_style"
        }

    },
    "devices": [
        "cpu", "cuda", "mps", "gpu"
    ],
    "backup_devices": [
        "cpu", "cuda", "ipu", "xpu", "mkldnn", "opengl", "opencl", "ideep", "hip", "ve", "fpga", "ort", "xla", "lazy", "vulkan", "mps", "meta", "hpu", "mtia", "privateuseone", "gpu"
    ],
    "refiners": ["stabilityai/stable-diffusion-xl-refiner-1.0"],
    "auto_encoders": {
        "None": "",
        "stabilityai/sdxl-vae": "finetuned auto encoder for stable diffusion models, see https://huggingface.co/stabilityai/sdxl-vae",
        "madebyollin/sdxl-vae-fp16-fix": "stable diffusion models encoder with fp16 precision, see https://huggingface.co/madebyollin/sdxl-vae-fp16-fix",
        "stabilityai/sd-vae-ft-mse": "works best with CompVis/stable-diffusion-v1-4, see https://huggingface.co/stabilityai/sd-vae-ft-mse"
    },
    "adapters": {
        "textual_inversion": {
            "None": {"token": "", "description": ""},
            "sd-concepts-library/gta5-artwork": {
                "token": "<gta-artwork>",
                "description": "see https://huggingface.co/sd-concepts-library/gta5-artwork"
            }
        },
        "lora": {
            "nerijs/pixel-art-xl": {
                "token": "pixel",
                "weight": "pixel-art-xl.safetensors",
                "description": "see https://huggingface.co/nerijs/pixel-art-xl"
            },
            "ByteDance/SDXL-Lightning": {
                "token": "SDXLL",
                "weight": "sdxl_lightning_4step_lora.safetensors",
                "description": "see https://huggingface.co/ByteDance/SDXL-Lightning"
            },
            "super-cereal-sdxl-lora": {
                "token": "cereals",
                "weight": "cereal_box_sdxl_v1.safetensors",
                "description": "see https://huggingface.co/ostris/super-cereal-sdxl-lora"
            },
            "CiroN2022/toy-face": {
                "token": "toy face",
                "weight": "toy_face_sdxl.safetensors",
                "description": "see https://huggingface.co/CiroN2022/toy-face"
            },
            "latent-consistency/lcm-lora-sdxl": {
                "token": "lora",
                "weight": "None",
                "description": "required base model is stabilityai/stable-diffusion-xl-base-1.0; required scheduler is LCMScheduler, Latent Consistency Models (LCM) enable quality image generation in typically 2-4 steps making it possible to use diffusion models in almost real-time settings; see, https://huggingface.co/docs/diffusers/using-diffusers/inference_with_lcm_lora and https://huggingface.co/latent-consistency/lcm-lora-sdxl"
            }
        }
    },
    "schedulers": {
        "DDPMScheduler":                    "Denoising Diffusion Probabilistic Model",  
        "DDIMScheduler":                    "Denoising Diffusion Incremental Sampling, efficient image generation, might require more tunin",  
        "PNDMScheduler":                    "Pseudo Numerical Methods for Diffusion Models, not compatible with DDPM pipelines, probably more flexible but with in increased complexity and performance trade-offs",
        "LMSDiscreteScheduler":             "Linear Multistep Scheduler, often leads to better quality results, linear approach, pre-defined noise levels at each step",
        "EulerDiscreteScheduler":           "can achieve high quality images with fewer steps, predefined set of noise levels for each step",
        "EulerAncestralDiscreteScheduler":  "can achieve high quality images with fewer steps, incorporates ancestral sampling for potentially improved image quality but less speed as its twin",
        "DPMSolverMultistepScheduler":      "offers a balance between speed and quality, potentially better than Euler in speed and quality, faster than PNDM, similar to LMS"
    },
    "negative_prompts": [
        "lowres, cropped, worst quality, low quality"
    ]
}