File size: 13,804 Bytes
4e0e2d3
38b82b3
 
 
 
 
 
5d39f28
 
 
 
 
 
 
 
 
 
38b82b3
 
5d39f28
 
 
2115a66
 
80c0bfe
4e0e2d3
a5097b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c0bfe
 
2115a66
5d39f28
 
 
 
 
 
 
 
 
 
 
80c0bfe
5d39f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c0bfe
5d39f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c0bfe
4e0e2d3
5d39f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115a66
5d39f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115a66
 
 
 
 
5d39f28
 
 
 
 
 
2115a66
5d39f28
 
2115a66
 
5d39f28
 
 
 
 
 
80c0bfe
 
 
2115a66
 
80c0bfe
1028fae
2115a66
 
80c0bfe
 
 
 
2115a66
 
 
 
 
5d39f28
 
80c0bfe
 
 
c75a58b
80c0bfe
c75a58b
 
5d39f28
 
2115a66
 
 
 
5d39f28
 
 
2115a66
5d39f28
 
2115a66
5d39f28
2115a66
 
5d39f28
 
 
2115a66
 
5d39f28
 
 
 
 
 
 
2115a66
 
5d39f28
2115a66
 
 
5d39f28
 
 
 
 
2115a66
 
 
 
80c0bfe
2115a66
 
5d39f28
2115a66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c0bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d39f28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import gradio as gr
import io
import base64
from flask import Flask, render_template, request, send_file, jsonify
import torch
import json
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers import (
    DDPMScheduler,
    DDIMScheduler,
    PNDMScheduler,
    LMSDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    DPMSolverMultistepScheduler,
)
import threading
import requests
from flask import Flask, render_template_string
from gradio import Interface
from diffusers import AutoencoderKL
import pandas as pd 
import base64
from config import *

# get 
# - initial configuration, 
# - a list of available devices from the config file
# - a list of available models from the config file
# - a list of available schedulers from the config file
# - a dict that contains code to for reproduction
initial_config, devices, models, schedulers, code = get_inital_config()

device                  = initial_config["device"]
model                   = initial_config["model"]
scheduler               = initial_config["scheduler"]
variant                 = initial_config["variant"]
allow_tensorfloat32     = initial_config["allow_tensorfloat32"]
use_safetensors         = initial_config["use_safetensors"]
data_type               = initial_config["data_type"]
safety_checker          = initial_config["safety_checker"]
requires_safety_checker = initial_config["requires_safety_checker"]
manual_seed             = initial_config["manual_seed"]
inference_steps         = initial_config["inference_steps"]
guidance_scale          = initial_config["guidance_scale"]
prompt                  = initial_config["prompt"]
negative_prompt         = initial_config["negative_prompt"]

config_history = []

def device_change(device):
    
    code[code_pos_device] = f'''device = "{device}"'''
    
    return get_sorted_code()

def models_change(model, scheduler):
        
    use_safetensors = False
    
    # no model selected (because this is UI init run)
    if type(model) != list and model is not None:
        
        use_safetensors = str(model_configs[model]['use_safetensors'])

        # if no scheduler is selected, choose the default one for this model
        if scheduler == None:
            
            scheduler = model_configs[model]['scheduler']
            
    code[code_pos_init_pipeline] = f'''pipeline = DiffusionPipeline.from_pretrained(
            "{model}", 
            use_safetensors=use_safetensors, 
            torch_dtype=data_type, 
            variant=variant).to(device)'''

    safety_checker_change(safety_checker)
    requires_safety_checker_change(requires_safety_checker)

    return get_sorted_code(), use_safetensors, scheduler

def data_type_change(selected_data_type):

    get_data_type(selected_data_type)
    return get_sorted_code()

def get_data_type(selected_data_type):
    
    if selected_data_type == "bfloat16":
        code[code_pos_data_type] = 'data_type = torch.bfloat16'
        data_type = torch.bfloat16 # BFloat16 is not supported on MPS as of 01/2024
    else:
        code[code_pos_data_type] = 'data_type = torch.float16'
        data_type = torch.float16 # Half-precision weights, as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 will save GPU memory

    return data_type

def tensorfloat32_change(allow_tensorfloat32):  
    
    get_tensorfloat32(allow_tensorfloat32)
    
    return get_sorted_code()

def get_tensorfloat32(allow_tensorfloat32):
    
    code[code_pos_tf32] = f'torch.backends.cuda.matmul.allow_tf32 = {allow_tensorfloat32}'
    
    return True if str(allow_tensorfloat32).lower() == 'true' else False

def variant_change(variant):
    
    if str(variant) == 'None':
        code[code_pos_variant] = f'variant = {variant}'
    else:
        code[code_pos_variant] = f'variant = "{variant}"'

    return get_sorted_code()
    
def safety_checker_change(safety_checker):
    
    if not safety_checker or str(safety_checker).lower == 'false':
        code[code_pos_safety_checker] = f'pipeline.safety_checker = None'
    else:
        code[code_pos_safety_checker] = ''
    
    return get_sorted_code()

def requires_safety_checker_change(requires_safety_checker):
    
    code[code_pos_requires_safety_checker] = f'pipeline.requires_safety_checker = {requires_safety_checker}'
    
    return get_sorted_code()

def schedulers_change(scheduler):
    
    if type(scheduler) != list and scheduler is not None:

        code[code_pos_scheduler] = f'pipeline.scheduler = {scheduler}.from_config(pipeline.scheduler.config)'
    
        return get_sorted_code(), scheduler_configs[scheduler]

    else:
        
        return get_sorted_code(), ''

def get_scheduler(scheduler, config):
    
    if scheduler == "DDPMScheduler":
        return DDPMScheduler.from_config(config)
    elif scheduler == "DDIMScheduler":
        return DDIMScheduler.from_config(config)
    elif scheduler == "PNDMScheduler":
        return PNDMScheduler.from_config(config)
    elif scheduler == "LMSDiscreteScheduler":
        return LMSDiscreteScheduler.from_config(config)
    elif scheduler == "EulerAncestralDiscreteScheduler":
        return EulerAncestralDiscreteScheduler.from_config(config)
    elif scheduler == "EulerDiscreteScheduler":
        return EulerDiscreteScheduler.from_config(config)
    elif scheduler == "DPMSolverMultistepScheduler":
        return DPMSolverMultistepScheduler.from_config(config)
    else:
        return DPMSolverMultistepScheduler.from_config(config)
    
# pipeline
def run_inference(model,
                    device, 
                    use_safetensors, 
                    data_type, 
                    variant, 
                    safety_checker,
                    requires_safety_checker,
                    scheduler,
                    prompt,
                    negative_prompt,
                    inference_steps,
                    manual_seed,
                    guidance_scale,
                    progress=gr.Progress(track_tqdm=True)):
    
    if model != None and scheduler != None:
        
        progress((1,3), desc="Preparing pipeline initialization...")
        
        torch.backends.cuda.matmul.allow_tf32 = get_tensorfloat32(allow_tensorfloat32) # Use TensorFloat-32 as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 faster, but slightly less accurate computations

        bool_use_safetensors = True if use_safetensors.lower() == 'true' else False
        
        progress((2,3), desc="Initializing pipeline...")
        
        pipeline = DiffusionPipeline.from_pretrained(
            model, 
            use_safetensors=bool_use_safetensors, 
            torch_dtype=get_data_type(data_type), 
            variant=variant).to(device)
        
        if safety_checker is None or str(safety_checker).lower == 'false':
            pipeline.safety_checker = None 

        pipeline.requires_safety_checker = bool(requires_safety_checker)
                
        pipeline.scheduler = get_scheduler(scheduler, pipeline.scheduler.config)
        
        
        if manual_seed < 0 or manual_seed is None or manual_seed == '':
            generator = torch.Generator(device)
        else:
            generator = torch.manual_seed(42) 
        
        progress((3,3), desc="Creating the result...")

        image = pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt,
            generator=generator,
            num_inference_steps=int(inference_steps), 
            guidance_scale=float(guidance_scale)).images[0]
    

        return "Done.", image
    
    else:
    
        return "Please select a model AND a scheduler.", None

def dict_list_to_markdown_table(config_history):

    if not config_history:
        return ""

    headers = list(config_history[0].keys())
    markdown_table = "| share | " + " | ".join(headers) + " |\n"
    markdown_table += "| ---  | " + " | ".join(["---"] * len(headers)) + " |\n"

    for index, config in enumerate(config_history):
        encoded_config = base64.b64encode(str(config).encode()).decode()
        share_link = f'<a target="_blank" href="?config={encoded_config}">📎</a>'
        markdown_table += f"| {share_link} | " + " | ".join(str(config.get(key, "")) for key in headers) + " |\n"

    markdown_table = '<div style="overflow-x: auto;">\n\n' + markdown_table + '</div>'

    return markdown_table

# interface
with gr.Blocks() as demo:
    
    in_import_config = gr.Text()
    
    gr.Markdown('''## Text-2-Image Playground
                <small>by <a target="_blank" href="https://www.linkedin.com/in/nickyreinert/">Nicky Reinert</a> | 
                home base: https://huggingface.co/spaces/n42/pictero
                </small>''')
    gr.Markdown("### Device specific settings")
    with gr.Row():
        in_devices = gr.Dropdown(label="Device:", value=device, choices=devices, filterable=True, multiselect=False, allow_custom_value=True)
        in_data_type = gr.Radio(label="Data Type:", value=data_type, choices=["bfloat16", "float16"], info="`blfoat16` is not supported on MPS devices right now; Half-precision weights, will save GPU memory, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16")
        in_allow_tensorfloat32 = gr.Radio(label="Allow TensorFloat32:", value=allow_tensorfloat32, choices=[True, False], info="is not supported on MPS devices right now; use TensorFloat-32 is faster, but results in slightly less accurate computations, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
        in_variant = gr.Radio(label="Variant:", value=variant, choices=["fp16", None], info="Use half-precision weights will save GPU memory, not all models support that, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
        
    gr.Markdown("### Model specific settings")
    with gr.Row():
        in_models = gr.Dropdown(choices=models, label="Model")
    with gr.Row():
        with gr.Column(scale=1):
            in_use_safetensors = gr.Radio(label="Use safe tensors:", choices=["True", "False"], interactive=False)
        with gr.Column(scale=1):
            in_safety_checker = gr.Radio(label="Enable safety checker:", value=safety_checker, choices=[True, False])
            in_requires_safety_checker = gr.Radio(label="Requires safety checker:", value=requires_safety_checker, choices=[True, False])

    gr.Markdown("### Scheduler")
    with gr.Row():
        in_schedulers = gr.Dropdown(choices=schedulers, label="Scheduler", info="see https://huggingface.co/docs/diffusers/using-diffusers/loading#schedulers" )
        out_scheduler_description = gr.Textbox(value="", label="Description")
    
    gr.Markdown("### Adapters")
    with gr.Row():
        gr.Markdown('Choose an adapter.')
        
    gr.Markdown("### Inference settings")
    with gr.Row():
        in_prompt = gr.TextArea(label="Prompt", value=prompt)
        in_negative_prompt = gr.TextArea(label="Negative prompt", value=negative_prompt)
    with gr.Row():
        in_inference_steps = gr.Textbox(label="Inference steps", value=inference_steps)
        in_manual_seed = gr.Textbox(label="Manual seed", value=manual_seed, info="Set this to -1 or leave it empty to randomly generate an image. A fixed value will result in a similar image for every run")
        in_guidance_scale = gr.Textbox(label="Guidance Scale", value=guidance_scale, info="A low guidance scale leads to a faster inference time, with the drawback that negative prompts don’t have any effect on the denoising process.")
        
    gr.Markdown("### Output")
    with gr.Row():
        btn_start_pipeline = gr.Button(value="Run inferencing")
    with gr.Row():
        # out_result = gr.Textbox(label="Status", value="")
        out_image = gr.Image()
        out_code = gr.Code(get_sorted_code(), label="Code")
    with gr.Row():
        out_current_config = gr.Code(value=str(initial_config), label="Current config")
    with gr.Row():
        out_config_history = gr.Markdown(dict_list_to_markdown_table(config_history))
    
    in_devices.change(device_change, inputs=[in_devices], outputs=[out_code])
    in_data_type.change(data_type_change, inputs=[in_data_type], outputs=[out_code])
    in_allow_tensorfloat32.change(tensorfloat32_change, inputs=[in_allow_tensorfloat32], outputs=[out_code])
    in_variant.change(variant_change, inputs=[in_variant], outputs=[out_code])
    in_models.change(models_change, inputs=[in_models, in_schedulers], outputs=[out_code, in_use_safetensors, in_schedulers])
    in_safety_checker.change(safety_checker_change, inputs=[in_safety_checker], outputs=[out_code])
    in_requires_safety_checker.change(requires_safety_checker_change, inputs=[in_requires_safety_checker], outputs=[out_code])
    in_schedulers.change(schedulers_change, inputs=[in_schedulers], outputs=[out_code, out_scheduler_description])
    btn_start_pipeline.click(run_inference, inputs=[
        in_models, 
        in_devices,
        in_use_safetensors,
        in_data_type,
        in_variant,
        in_safety_checker,
        in_requires_safety_checker,
        in_schedulers,
        in_prompt,
        in_negative_prompt,
        in_inference_steps,
        in_manual_seed,
        in_guidance_scale
        ], outputs=[out_image])

    demo.load(fn=init_config, inputs=out_current_config, 
        outputs=[
            in_models,
            in_devices,
            in_use_safetensors,
            in_data_type,
            in_variant,
            in_safety_checker,
            in_requires_safety_checker,
            in_schedulers,
            in_prompt,
            in_negative_prompt,
            in_inference_steps,
            in_manual_seed,
            in_guidance_scale
            ])

demo.launch()