File size: 5,065 Bytes
d096445 5d39f28 164f777 c6a81f6 a447492 d096445 164f777 c6a81f6 a447492 164f777 c6a81f6 a447492 164f777 c6a81f6 a447492 164f777 c6a81f6 a447492 164f777 5a9e237 c6a81f6 a447492 164f777 c6a81f6 a447492 164f777 c6a81f6 a447492 164f777 c6a81f6 a447492 d096445 aa565a5 da67542 aa565a5 ec25ef6 cec477c 5d39f28 d9d145c 5d39f28 d096445 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
{
"models": {
"sd-dreambooth-library/solo-levelling-art-style": {
"use_safetensors": false,
"description": "see https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style",
"scheduler": "DDIMScheduler",
"refiner": "none",
"trigger_token": ""
},
"CompVis/stable-diffusion-v1-4": {
"use_safetensors": true,
"description": "see https://huggingface.co/CompVis/stable-diffusion-v1-4",
"scheduler": "EulerDiscreteScheduler",
"refiner": "none",
"trigger_token": ""
},
"runwayml/stable-diffusion-v1-5": {
"use_safetensors": true,
"description": "see https://huggingface.co/runwayml/stable-diffusion-v1-5",
"scheduler": "DDPMScheduler",
"refiner": "none",
"trigger_token": ""
},
"stabilityai/stable-diffusion-2-1": {
"use_safetensors": true,
"description": "see https://huggingface.co/stabilityai/stable-diffusion-2-1",
"scheduler": "DPMSolverMultistepScheduler",
"refiner": "none",
"trigger_token": ""
},
"stabilityai/stable-diffusion-xl-base-1.0": {
"use_safetensors": true,
"description": "see https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
"scheduler": "DDPMScheduler",
"refiner": "stabilityai/stable-diffusion-xl-refiner-1.0",
"trigger_token": ""
},
"sd-dreambooth-library/house-emblem": {
"use_safetensors": false,
"description": "see https://huggingface.co/sd-dreambooth-library/house-emblem",
"scheduler": "DDPMScheduler",
"refiner": "none",
"trigger_token": ""
},
"Envvi/Inkpunk-Diffusion": {
"use_safetensors": false,
"description": "see https://huggingface.co/Envvi/Inkpunk-Diffusion",
"scheduler": "DDPMScheduler",
"refiner": "none",
"trigger_token": ""
},
"Stelath/textual_inversion_comic_strip_fp16": {
"use_safetensors": true,
"description": "see https://huggingface.co/Stelath/textual_inversion_comic_strip_fp16",
"scheduler": "DDPMScheduler",
"refiner": "none",
"trigger_token": ""
},
"sd-dreambooth-library/herge-style": {
"use_safetensors": false,
"description": "see https://huggingface.co/sd-dreambooth-library/herge-style",
"scheduler": "DDPMScheduler",
"refiner": "none",
"trigger_token": "herge_style"
}
},
"devices": [
"cpu", "cuda", "mps", "gpu"
],
"backup_devices": [
"cpu", "cuda", "ipu", "xpu", "mkldnn", "opengl", "opencl", "ideep", "hip", "ve", "fpga", "ort", "xla", "lazy", "vulkan", "mps", "meta", "hpu", "mtia", "privateuseone", "gpu"
],
"auto_encoders": {
"None": "",
"stabilityai/sdxl-vae": "finetuned auto encoder for stable diffusion models, see https://huggingface.co/stabilityai/sdxl-vae",
"madebyollin/sdxl-vae-fp16-fix": "stable diffusion models encoder with fp16 precision, see https://huggingface.co/madebyollin/sdxl-vae-fp16-fix",
"stabilityai/sd-vae-ft-mse": "works best with CompVis/stable-diffusion-v1-4, see https://huggingface.co/stabilityai/sd-vae-ft-mse"
},
"adapters": {
"textual_inversion": {
"None": {"token": "", "description": ""},
"sd-concepts-library/gta5-artwork": {
"token": "<gta-artwork>",
"description": "see https://huggingface.co/sd-concepts-library/gta5-artwork"
}
}
},
"schedulers": {
"DDPMScheduler": "Denoising Diffusion Probabilistic Model",
"DDIMScheduler": "Denoising Diffusion Incremental Sampling, efficient image generation, might require more tunin",
"PNDMScheduler": "Pseudo Numerical Methods for Diffusion Models, not compatible with DDPM pipelines, probably more flexible but with in increased complexity and performance trade-offs",
"LMSDiscreteScheduler": "Linear Multistep Scheduler, often leads to better quality results, linear approach, pre-defined noise levels at each step",
"EulerDiscreteScheduler": "can achieve high quality images with fewer steps, predefined set of noise levels for each step",
"EulerAncestralDiscreteScheduler": "can achieve high quality images with fewer steps, incorporates ancestral sampling for potentially improved image quality but less speed as its twin",
"DPMSolverMultistepScheduler": "offers a balance between speed and quality, potentially better than Euler in speed and quality, faster than PNDM, similar to LMS"
},
"negative_prompts": [
"lowres, cropped, worst quality, low quality"
]
} |