mpsk's picture
fixed Top-K Images returns nothing
0c1a701
raw
history blame
16.9 kB
from time import time
from io import BytesIO
import torch
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import logging
from os import environ
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from myscaledb import Client
from classifier import Classifier, prompt2vec, tune, SplitLayer
from query_model import simple_query, topk_obj_query, rev_query
from card_model import card, obj_card, style
from box_utils import postprocess
environ['TOKENIZERS_PARALLELISM'] = 'true'
OBJ_DB_NAME = "mqdb_demo.coco_owl_vit_b_32_objects"
IMG_DB_NAME = "mqdb_demo.coco_owl_vit_b_32_images"
MODEL_ID = 'google/owlvit-base-patch32'
DIMS = 512
qtime = 0
def build_model(name="google/owlvit-base-patch32"):
"""Model builder function
Args:
name (str, optional): Name for HuggingFace OwlViT model. Defaults to "google/owlvit-base-patch32".
Returns:
(model, processor): OwlViT model and its processor for both image and text
"""
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
model = OwlViTForObjectDetection.from_pretrained(name).to(device)
processor = OwlViTProcessor.from_pretrained(name)
return model, processor
@st.experimental_singleton(show_spinner=False)
def init_owlvit():
""" Initialize OwlViT Model
Returns:
model, processor
"""
model, processor = build_model(MODEL_ID)
return model, processor
@st.experimental_singleton(show_spinner=False)
def init_db():
""" Initialize the Database Connection
Returns:
meta_field: Meta field that records if an image is viewed or not
client: Database connection object
"""
meta = []
client = Client(
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
# We can check if the connection is alive
assert client.is_alive()
return meta, client
def refresh_index():
""" Clean the session
"""
del st.session_state["meta"]
st.session_state.meta = []
st.session_state.query_num = 0
logging.info(f"Refresh for '{st.session_state.meta}'")
# Need to clear singleton function with streamlit API
init_db.clear()
# refresh session states
st.session_state.meta, st.session_state.index = init_db()
if 'clf' in st.session_state:
del st.session_state.clf
if 'xq' in st.session_state:
del st.session_state.xq
if 'topk_img_id' in st.session_state:
del st.session_state.topk_img_id
def query(xq, exclude_list=None):
""" Query matched w.r.t a given vector
In this part, we will retrieve A LOT OF data from the server,
including TopK boxes and their embeddings, the counterpart of non-TopK boxes in TopK images.
Args:
xq (numpy.ndarray or list of floats): Query vector
Returns:
matches: list of Records object. Keys referrring to selected columns group by images.
Exclude the user's viewlist.
img_matches: list of Records object. Containing other non-TopK but hit objects among TopK images.
side_matches: list of Records object. Containing REAL TopK objects disregard the user's view history
"""
attempt = 0
xq = xq
xq = xq / np.linalg.norm(xq, axis=-1, ord=2, keepdims=True)
status_bar = [st.empty(), st.empty()]
status_bar[0].write("Retrieving Another TopK Images...")
pbar = status_bar[1].progress(0)
while attempt < 3:
try:
matches = topk_obj_query(
st.session_state.index, xq, IMG_DB_NAME, OBJ_DB_NAME,
exclude_list=exclude_list, topk=5000)
img_ids = [r['img_id'] for r in matches]
if 'topk_img_id' not in st.session_state:
st.session_state.topk_img_id = img_ids
status_bar[0].write("Retrieving TopK Images...")
pbar.progress(25)
o_matches = rev_query(
st.session_state.index, xq, st.session_state.topk_img_id,
IMG_DB_NAME, OBJ_DB_NAME, thresh=0.1)
status_bar[0].write("Retrieving TopKs Objects...")
pbar.progress(50)
side_matches = simple_query(st.session_state.index, xq, IMG_DB_NAME, OBJ_DB_NAME,
thresh=-1, topk=5000)
status_bar[0].write(
"Retrieving Non-TopK in Another TopK Images...")
pbar.progress(75)
if len(img_ids) > 0:
img_matches = rev_query(
st.session_state.index, xq, img_ids, IMG_DB_NAME, OBJ_DB_NAME,
thresh=0.1)
else:
img_matches = []
status_bar[0].write("DONE!")
pbar.progress(100)
break
except Exception as e:
# force reload if we have trouble on connections or something else
logging.warning(str(e))
st.session_state.meta, st.session_state.index = init_db()
attempt += 1
matches = []
_ = [s.empty() for s in status_bar]
if len(matches) == 0:
logging.error(f"No matches found for '{OBJ_DB_NAME}'")
return matches, img_matches, side_matches, o_matches
@st.experimental_singleton(show_spinner=False)
def init_random_query():
"""Initialize a random query vector
Returns:
xq: a random vector
"""
xq = np.random.rand(1, DIMS)
xq /= np.linalg.norm(xq, keepdims=True, axis=-1)
return xq
def submit(meta):
""" Tune the model w.r.t given score from user.
"""
# Only updating the meta if the train button is pressed
st.session_state.meta.extend(meta)
st.session_state.step += 1
matches = st.session_state.matched_boxes
X, y = list(zip(*((v[-1],
st.session_state.text_prompts.index(
st.session_state[f"label-{i}"])) for i, v in matches.items())))
st.session_state.xq = tune(st.session_state.clf,
X, y, iters=int(st.session_state.iters))
st.session_state.matches, \
st.session_state.img_matches, \
st.session_state.side_matches, \
st.session_state.o_matches = query(
st.session_state.xq, st.session_state.meta)
# st.set_page_config(layout="wide")
# To hack the streamlit style we define our own style.
# Boxes are drawn in SVGs.
st.write(style(), unsafe_allow_html=True)
with st.spinner("Connecting DB..."):
st.session_state.meta, st.session_state.index = init_db()
with st.spinner("Loading Models..."):
# Initialize model
model, tokenizer = init_owlvit()
# If its a fresh start... (query not set)
if 'xq' not in st.session_state:
with st.container():
st.title('Object Detection Safari')
start = [st.empty() for _ in range(8)]
start[0].info("""
We extracted boxes from **287,104** images in COCO Dataset, including its train / val / test /
unlabeled images, collecting **165,371,904 boxes** which are then filtered with common prompts.
You can search with almost any words or phrases you can think of. Please enjoy your journey of
an adventure to COCO.
""")
prompt = start[1].text_input(
"Prompt:", value="", placeholder="Examples: football, billboard, stop sign, watermark ...",)
with start[2].container():
st.write(
'You can search with multiple keywords. Plese separate with commas but with no space.')
st.write('For example: `cat,dog,tree`')
st.markdown('''
<p style="color:gray;"> Don\'t know what to search? Try <b>Random</b>!</p>
''',
unsafe_allow_html=True)
upld_model = start[4].file_uploader(
"Or you can upload your previous run!", type='onnx')
upld_btn = start[5].button(
"Use Loaded Weights", disabled=upld_model is None, on_click=refresh_index)
with start[3]:
col = st.columns(8)
has_no_prompt = (len(prompt) == 0 and upld_model is None)
prompt_xq = col[6].button("Prompt", disabled=len(
prompt) == 0, on_click=refresh_index)
random_xq = col[7].button(
"Random", disabled=not has_no_prompt, on_click=refresh_index)
matches = []
img_matches = []
if random_xq:
xq = init_random_query()
st.session_state.xq = xq
prompt = 'unknown'
st.session_state.text_prompts = prompt.split(',') + ['none']
_ = [elem.empty() for elem in start]
t0 = time()
st.session_state.matches, \
st.session_state.img_matches, \
st.session_state.side_matches, \
st.session_state.o_matches = query(
st.session_state.xq, st.session_state.meta)
t1 = time()
qtime = (t1-t0) * 1000
elif prompt_xq or upld_btn:
if upld_model is not None:
import onnx
from onnx import numpy_helper
_model = onnx.load(upld_model)
st.session_state.text_prompts = [
node.name for node in _model.graph.output] + ['none']
weights = _model.graph.initializer
xq = numpy_helper.to_array(weights[0]).T
assert xq.shape[0] == len(
st.session_state.text_prompts)-1 and xq.shape[1] == DIMS
st.session_state.xq = xq
_ = [elem.empty() for elem in start]
else:
logging.info(f"Input prompt is {prompt}")
st.session_state.text_prompts = prompt.split(',') + ['none']
input_ids, xq = prompt2vec(
st.session_state.text_prompts[:-1], model, tokenizer)
st.session_state.xq = xq
_ = [elem.empty() for elem in start]
t0 = time()
st.session_state.matches, \
st.session_state.img_matches, \
st.session_state.side_matches, \
st.session_state.o_matches = query(
st.session_state.xq, st.session_state.meta)
t1 = time()
qtime = (t1-t0) * 1000
# If its not a fresh start (query is set)
if 'xq' in st.session_state:
o_matches = st.session_state.o_matches
side_matches = st.session_state.side_matches
img_matches = st.session_state.img_matches
matches = st.session_state.matches
# initialize classifier
if 'clf' not in st.session_state:
st.session_state.clf = Classifier(st.session_state.xq)
st.session_state.step = 0
if qtime > 0:
st.info("Query done in {0:.2f} ms and returned {1:d} images with {2:d} boxes".format(
qtime, len(matches), sum([len(m["box_id"]) + len(im["box_id"]) for m, im in zip(matches, img_matches)])))
# export the model into executable ONNX
st.session_state.dnld_model = BytesIO()
torch.onnx.export(torch.nn.Sequential(st.session_state.clf.model, SplitLayer()),
torch.zeros([1, len(st.session_state.xq[0])]),
st.session_state.dnld_model,
input_names=['input'],
output_names=st.session_state.text_prompts[:-1])
dnld_nam = st.text_input('Download Name:',
f'{("_".join([i.replace(" ", "-") for i in st.session_state.text_prompts[:-1]]) if "text_prompts" in st.session_state else "model")}.onnx',
max_chars=50)
dnld_btn = st.download_button('Download your classifier!',
st.session_state.dnld_model,
dnld_nam)
# build up a sidebar to display REAL TopK in DB
# this will change during user's finetune. But sometime it would lead to bad results
side_bar_len = min(240 // len(st.session_state.text_prompts), 120)
with st.sidebar:
with st.expander("Top-K Images"):
with st.container():
boxes_w_img, _ = postprocess(o_matches, st.session_state.text_prompts,
o_matches)
boxes_w_img = sorted(
boxes_w_img, key=lambda x: x[4], reverse=True)
for img_id, img_url, img_w, img_h, img_score, boxes in boxes_w_img:
args = img_url, img_w, img_h, boxes
st.write(card(*args), unsafe_allow_html=True)
with st.expander("Top-K Objects", expanded=True):
side_cols = st.columns(
len(st.session_state.text_prompts[:-1]))
for _cols, m in zip(side_cols, side_matches):
with _cols.container():
for cx, cy, w, h, logit, img_url, img_w, img_h \
in zip(m['cx'], m['cy'], m['w'], m['h'], m['logit'],
m['img_url'], m['img_w'], m['img_h']):
st.write("{:s}: {:.4f}".format(
st.session_state.text_prompts[m['label']], logit))
_html = obj_card(
img_url, img_w, img_h, cx, cy, w, h, dst_len=side_bar_len)
components.html(
_html, side_bar_len, side_bar_len)
with st.container():
# Here let the user interact with batch labeling
with st.form("batch", clear_on_submit=False):
col = st.columns([1, 9])
# If there is nothing to show about
if len(matches) <= 0:
st.warning(
'Oops! We didn\'t find anything relevant to your query! Pleas try another one :/')
else:
st.session_state.iters = st.slider(
"Number of Iterations to Update", min_value=0, max_value=10, step=1, value=2)
# No matter what happened the user wants a way back
col[1].form_submit_button(
"Choose a new prompt", on_click=refresh_index)
# If there are things to show
if len(matches) > 0:
with st.container():
prompt_labels = st.session_state.text_prompts
# Post processing boxes regarding to their score, intersection
boxes_w_img, meta = postprocess(matches, st.session_state.text_prompts,
img_matches)
# Sort the result according to their relavancy
boxes_w_img = sorted(
boxes_w_img, key=lambda x: x[4], reverse=True)
st.session_state.matched_boxes = {}
# For each images in the retrieved images, DISPLAY
for img_id, img_url, img_w, img_h, img_score, boxes in boxes_w_img:
# prepare inputs for training
st.session_state.matched_boxes.update(
{b[0]: b for b in boxes})
args = img_url, img_w, img_h, boxes
# display boxes
with st.expander("{:s}: {:.4f}".format(img_id, img_score), expanded=True):
ind_b = 0
# 4 columns: (img, obj, obj, obj)
img_row = st.columns([4, 2, 2, 2])
img_row[0].write(
card(*args), unsafe_allow_html=True)
# crop objects out of the original image
for b in boxes:
_id, cx, cy, w, h, label, logit, is_selected, _ = b
with img_row[1 + ind_b % 3].container():
st.write(
"{:s}: {:.4f}".format(label, logit))
# quite hacky: with streamlit components API
_html = \
obj_card(img_url, img_w, img_h,
*b[1:5], dst_len=120)
components.html(_html, 120, 120)
# the user will choose the right label of the given object
st.selectbox(
"Class",
prompt_labels,
index=prompt_labels.index(label),
key=f"label-{_id}")
ind_b += 1
col[0].form_submit_button(
"Train!", on_click=lambda: submit(meta))