File size: 19,493 Bytes
3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 88c0383 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 3f1124e 2cff12a 88c0383 2cff12a 88c0383 2cff12a 88c0383 2cff12a 3f1124e 2cff12a 88c0383 2cff12a 3f1124e 2cff12a 88c0383 2cff12a 88c0383 2cff12a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
from time import time
from io import BytesIO
import torch
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import logging
from os import environ
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from bot import Bot, Message
from myscaledb import Client
from classifier import Classifier, prompt2vec, tune, SplitLayer
from query_model import simple_query, topk_obj_query, rev_query
from card_model import card, obj_card, style
from box_utils import postprocess
environ["TOKENIZERS_PARALLELISM"] = "true"
OBJ_DB_NAME = "mqdb_demo.coco_owl_vit_b_32_objects"
IMG_DB_NAME = "mqdb_demo.coco_owl_vit_b_32_images"
MODEL_ID = "google/owlvit-base-patch32"
DIMS = 512
qtime = 0
def build_model(name="google/owlvit-base-patch32"):
"""Model builder function
Args:
name (str, optional): Name for HuggingFace OwlViT model. Defaults to "google/owlvit-base-patch32".
Returns:
(model, processor): OwlViT model and its processor for both image and text
"""
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
model = OwlViTForObjectDetection.from_pretrained(name).to(device)
processor = OwlViTProcessor.from_pretrained(name)
return model, processor
@st.experimental_singleton(show_spinner=False)
def init_owlvit():
"""Initialize OwlViT Model
Returns:
model, processor
"""
model, processor = build_model(MODEL_ID)
return model, processor
@st.experimental_singleton(show_spinner=False)
def init_db():
"""Initialize the Database Connection
Returns:
meta_field: Meta field that records if an image is viewed or not
client: Database connection object
"""
meta = []
client = Client(
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"]
)
# We can check if the connection is alive
assert client.is_alive()
return meta, client
def refresh_index():
"""Clean the session"""
del st.session_state["meta"]
st.session_state.meta = []
st.session_state.query_num = 0
logging.info(f"Refresh for '{st.session_state.meta}'")
# Need to clear singleton function with streamlit API
init_db.clear()
# refresh session states
st.session_state.meta, st.session_state.index = init_db()
if "clf" in st.session_state:
del st.session_state.clf
if "xq" in st.session_state:
del st.session_state.xq
if "topk_img_id" in st.session_state:
del st.session_state.topk_img_id
def query(xq, exclude_list=None):
"""Query matched w.r.t a given vector
In this part, we will retrieve A LOT OF data from the server,
including TopK boxes and their embeddings, the counterpart of non-TopK boxes in TopK images.
Args:
xq (numpy.ndarray or list of floats): Query vector
Returns:
matches: list of Records object. Keys referrring to selected columns group by images.
Exclude the user's viewlist.
img_matches: list of Records object. Containing other non-TopK but hit objects among TopK images.
side_matches: list of Records object. Containing REAL TopK objects disregard the user's view history
"""
attempt = 0
xq = xq
xq = xq / np.linalg.norm(xq, axis=-1, ord=2, keepdims=True)
status_bar = [st.empty(), st.empty()]
status_bar[0].write("Retrieving Another TopK Images...")
pbar = status_bar[1].progress(0)
while attempt < 3:
try:
matches = topk_obj_query(
st.session_state.index,
xq,
IMG_DB_NAME,
OBJ_DB_NAME,
exclude_list=exclude_list,
topk=5000,
)
img_ids = [r["img_id"] for r in matches]
if "topk_img_id" not in st.session_state:
st.session_state.topk_img_id = img_ids
status_bar[0].write("Retrieving TopK Images...")
pbar.progress(25)
o_matches = rev_query(
st.session_state.index,
xq,
st.session_state.topk_img_id,
IMG_DB_NAME,
OBJ_DB_NAME,
thresh=0.1,
)
status_bar[0].write("Retrieving TopKs Objects...")
pbar.progress(50)
side_matches = simple_query(
st.session_state.index,
xq,
IMG_DB_NAME,
OBJ_DB_NAME,
thresh=-1,
topk=5000,
)
status_bar[0].write("Retrieving Non-TopK in Another TopK Images...")
pbar.progress(75)
if len(img_ids) > 0:
img_matches = rev_query(
st.session_state.index,
xq,
img_ids,
IMG_DB_NAME,
OBJ_DB_NAME,
thresh=0.1,
)
else:
img_matches = []
status_bar[0].write("DONE!")
pbar.progress(100)
break
except Exception as e:
# force reload if we have trouble on connections or something else
logging.warning(str(e))
st.session_state.meta, st.session_state.index = init_db()
attempt += 1
matches = []
_ = [s.empty() for s in status_bar]
if len(matches) == 0:
logging.error(f"No matches found for '{OBJ_DB_NAME}'")
return matches, img_matches, side_matches, o_matches
@st.experimental_singleton(show_spinner=False)
def init_random_query():
"""Initialize a random query vector
Returns:
xq: a random vector
"""
xq = np.random.rand(1, DIMS)
xq /= np.linalg.norm(xq, keepdims=True, axis=-1)
return xq
def submit(meta):
"""Tune the model w.r.t given score from user."""
# Only updating the meta if the train button is pressed
st.session_state.meta.extend(meta)
st.session_state.step += 1
matches = st.session_state.matched_boxes
X, y = list(
zip(
*(
(
v[0],
st.session_state.text_prompts.index(st.session_state[f"label-{i}"]),
)
for i, v in matches.items()
)
)
)
st.session_state.xq = tune(
st.session_state.clf, X, y, iters=int(st.session_state.iters)
)
(
st.session_state.matches,
st.session_state.img_matches,
st.session_state.side_matches,
st.session_state.o_matches,
) = query(st.session_state.xq, st.session_state.meta)
# st.set_page_config(layout="wide")
# To hack the streamlit style we define our own style.
# Boxes are drawn in SVGs.
st.write(style(), unsafe_allow_html=True)
bot = Bot(app_name="HF OwlViT", enabled=True, bot_key=st.secrets['BOT_KEY'])
try:
with st.spinner("Connecting DB..."):
st.session_state.meta, st.session_state.index = init_db()
with st.spinner("Loading Models..."):
# Initialize model
model, tokenizer = init_owlvit()
# If its a fresh start... (query not set)
if "xq" not in st.session_state:
with st.container():
st.title("Object Detection Safari")
start = [st.empty() for _ in range(8)]
start[0].info(
"""
We extracted boxes from **287,104** images in COCO Dataset, including its train / val / test /
unlabeled images, collecting **165,371,904 boxes** which are then filtered with common prompts.
You can search with almost any words or phrases you can think of. Please enjoy your journey of
an adventure to COCO.
"""
)
prompt = start[1].text_input(
"Prompt:",
value="",
placeholder="Examples: football, billboard, stop sign, watermark ...",
)
with start[2].container():
st.write(
"You can search with multiple keywords. Plese separate with commas but with no space."
)
st.write("For example: `cat,dog,tree`")
st.markdown(
"""
<p style="color:gray;"> Don\'t know what to search? Try <b>Random</b>!</p>
""",
unsafe_allow_html=True,
)
upld_model = start[4].file_uploader(
"Or you can upload your previous run!", type="onnx"
)
upld_btn = start[5].button(
"Use Loaded Weights", disabled=upld_model is None, on_click=refresh_index
)
with start[3]:
col = st.columns(8)
has_no_prompt = len(prompt) == 0 and upld_model is None
prompt_xq = col[6].button(
"Prompt", disabled=len(prompt) == 0, on_click=refresh_index
)
random_xq = col[7].button(
"Random", disabled=not has_no_prompt, on_click=refresh_index
)
matches = []
img_matches = []
if random_xq:
xq = init_random_query()
st.session_state.xq = xq
prompt = "unknown"
st.session_state.text_prompts = prompt.split(",") + ["none"]
_ = [elem.empty() for elem in start]
t0 = time()
(
st.session_state.matches,
st.session_state.img_matches,
st.session_state.side_matches,
st.session_state.o_matches,
) = query(st.session_state.xq, st.session_state.meta)
t1 = time()
qtime = (t1 - t0) * 1000
elif prompt_xq or upld_btn:
if upld_model is not None:
import onnx
from onnx import numpy_helper
_model = onnx.load(upld_model)
st.session_state.text_prompts = [
node.name for node in _model.graph.output
] + ["none"]
weights = _model.graph.initializer
xq = numpy_helper.to_array(weights[0]).T
assert (
xq.shape[0] == len(st.session_state.text_prompts) - 1
and xq.shape[1] == DIMS
)
st.session_state.xq = xq
_ = [elem.empty() for elem in start]
else:
logging.info(f"Input prompt is {prompt}")
st.session_state.text_prompts = prompt.split(",") + ["none"]
input_ids, xq = prompt2vec(
st.session_state.text_prompts[:-1], model, tokenizer
)
st.session_state.xq = xq
_ = [elem.empty() for elem in start]
t0 = time()
(
st.session_state.matches,
st.session_state.img_matches,
st.session_state.side_matches,
st.session_state.o_matches,
) = query(st.session_state.xq, st.session_state.meta)
t1 = time()
qtime = (t1 - t0) * 1000
# If its not a fresh start (query is set)
if "xq" in st.session_state:
o_matches = st.session_state.o_matches
side_matches = st.session_state.side_matches
img_matches = st.session_state.img_matches
matches = st.session_state.matches
# initialize classifier
if "clf" not in st.session_state:
st.session_state.clf = Classifier(st.session_state.index, OBJ_DB_NAME, st.session_state.xq)
st.session_state.step = 0
if qtime > 0:
st.info(
"Query done in {0:.2f} ms and returned {1:d} images with {2:d} boxes".format(
qtime,
len(matches),
sum(
[
len(m["box_id"]) + len(im["box_id"])
for m, im in zip(matches, img_matches)
]
),
)
)
lnprob = torch.nn.Linear(st.session_state.xq.shape[1], st.session_state.xq.shape[0], bias=False)
lnprob.weight = torch.nn.Parameter(st.session_state.clf.weight)
# export the model into executable ONNX
st.session_state.dnld_model = BytesIO()
torch.onnx.export(
torch.nn.Sequential(lnprob, SplitLayer()),
torch.zeros([1, len(st.session_state.xq[0])]),
st.session_state.dnld_model,
input_names=["input"],
output_names=st.session_state.text_prompts[:-1],
)
dnld_nam = st.text_input(
"Download Name:",
f'{("_".join([i.replace(" ", "-") for i in st.session_state.text_prompts[:-1]]) if "text_prompts" in st.session_state else "model")}.onnx',
max_chars=50,
)
dnld_btn = st.download_button(
"Download your classifier!", st.session_state.dnld_model, dnld_nam
)
# build up a sidebar to display REAL TopK in DB
# this will change during user's finetune. But sometime it would lead to bad results
side_bar_len = min(240 // len(st.session_state.text_prompts), 120)
with st.sidebar:
with st.expander("Top-K Images"):
with st.container():
boxes_w_img, _ = postprocess(
o_matches, st.session_state.text_prompts, o_matches,
agnostic_ratio=1-0.6**(st.session_state.step+1),
class_ratio=1-0.2**(st.session_state.step+1)
)
boxes_w_img = sorted(boxes_w_img, key=lambda x: x[4], reverse=True)
for img_id, img_url, img_w, img_h, img_score, boxes in boxes_w_img:
args = img_url, img_w, img_h, boxes
st.write(card(*args), unsafe_allow_html=True)
with st.expander("Top-K Objects", expanded=True):
side_cols = st.columns(len(st.session_state.text_prompts[:-1]))
for _cols, m in zip(side_cols, side_matches):
with _cols.container():
for cx, cy, w, h, logit, img_url, img_w, img_h in zip(
m["cx"],
m["cy"],
m["w"],
m["h"],
m["logit"],
m["img_url"],
m["img_w"],
m["img_h"],
):
st.write(
"{:s}: {:.4f}".format(
st.session_state.text_prompts[m["label"]], logit
)
)
_html = obj_card(
img_url, img_w, img_h, cx, cy, w, h, dst_len=side_bar_len
)
components.html(_html, side_bar_len, side_bar_len)
with st.container():
# Here let the user interact with batch labeling
with st.form("batch", clear_on_submit=False):
col = st.columns([1, 9])
# If there is nothing to show about
if len(matches) <= 0:
st.warning(
"Oops! We didn't find anything relevant to your query! Pleas try another one :/"
)
else:
st.session_state.iters = st.slider(
"Number of Iterations to Update",
min_value=0,
max_value=10,
step=1,
value=2,
)
# No matter what happened the user wants a way back
col[1].form_submit_button("Choose a new prompt", on_click=refresh_index)
# If there are things to show
if len(matches) > 0:
with st.container():
prompt_labels = st.session_state.text_prompts
# Post processing boxes regarding to their score, intersection
boxes_w_img, meta = postprocess(
matches, st.session_state.text_prompts, img_matches,
agnostic_ratio=1-0.6**(st.session_state.step+1),
class_ratio=1-0.2**(st.session_state.step+1)
)
# Sort the result according to their relavancy
boxes_w_img = sorted(boxes_w_img, key=lambda x: x[4], reverse=True)
st.session_state.matched_boxes = {}
# For each images in the retrieved images, DISPLAY
for img_id, img_url, img_w, img_h, img_score, boxes in boxes_w_img:
# prepare inputs for training
st.session_state.matched_boxes.update({b[0]: b for b in boxes})
args = img_url, img_w, img_h, boxes
# display boxes
with st.expander(
"{:s}: {:.4f}".format(img_id, img_score), expanded=True
):
ind_b = 0
# 4 columns: (img, obj, obj, obj)
img_row = st.columns([4, 2, 2, 2])
img_row[0].write(card(*args), unsafe_allow_html=True)
# crop objects out of the original image
for b in boxes:
_id, cx, cy, w, h, label, logit, is_selected = b[:8]
with img_row[1 + ind_b % 3].container():
st.write("{:s}: {:.4f}".format(label, logit))
# quite hacky: with streamlit components API
_html = obj_card(
img_url, img_w, img_h, *b[1:5], dst_len=120
)
components.html(_html, 120, 120)
# the user will choose the right label of the given object
st.selectbox(
"Class",
prompt_labels,
index=prompt_labels.index(label),
key=f"label-{_id}",
)
ind_b += 1
col[0].form_submit_button("Train!", on_click=lambda: submit(meta))
except Exception as e:
msg = Message()
msg.content = str(e.with_traceback(None))
msg.type_hint = str(type(e).__name__)
bot.incident(msg)
|