Spaces:
Runtime error
Runtime error
xuyingli
commited on
Commit
·
6fb8953
1
Parent(s):
44a92c5
Update app.py
Browse files
app.py
CHANGED
@@ -404,7 +404,7 @@ else:
|
|
404 |
expander.markdown(
|
405 |
"""<span style="word-wrap:break-word;">Contact prediction is based on a logistic regression over the model's attention maps. This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners. (Rao et al. 2020)The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.</span>
|
406 |
""", unsafe_allow_html=True)
|
407 |
-
elif option == 'search the database':
|
408 |
sequence = st.text_input('protein sequence', '')
|
409 |
st.write('Try an example:')
|
410 |
if st.button('Cas9 Enzyme'):
|
@@ -436,7 +436,7 @@ else:
|
|
436 |
show_protein_structure(result_temp_seq[4])
|
437 |
|
438 |
|
439 |
-
elif option == 'activity prediction':
|
440 |
st.markdown('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
|
441 |
# st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
|
442 |
sequence = st.text_input('protein sequence', '')
|
|
|
404 |
expander.markdown(
|
405 |
"""<span style="word-wrap:break-word;">Contact prediction is based on a logistic regression over the model's attention maps. This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners. (Rao et al. 2020)The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.</span>
|
406 |
""", unsafe_allow_html=True)
|
407 |
+
elif option == 'search the database for similar proteins':
|
408 |
sequence = st.text_input('protein sequence', '')
|
409 |
st.write('Try an example:')
|
410 |
if st.button('Cas9 Enzyme'):
|
|
|
436 |
show_protein_structure(result_temp_seq[4])
|
437 |
|
438 |
|
439 |
+
elif option == 'activity prediction with similar proteins':
|
440 |
st.markdown('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
|
441 |
# st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
|
442 |
sequence = st.text_input('protein sequence', '')
|