xuyingli commited on
Commit
6fb8953
·
1 Parent(s): 44a92c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -404,7 +404,7 @@ else:
404
  expander.markdown(
405
  """<span style="word-wrap:break-word;">Contact prediction is based on a logistic regression over the model's attention maps. This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners. (Rao et al. 2020)The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.</span>
406
  """, unsafe_allow_html=True)
407
- elif option == 'search the database':
408
  sequence = st.text_input('protein sequence', '')
409
  st.write('Try an example:')
410
  if st.button('Cas9 Enzyme'):
@@ -436,7 +436,7 @@ else:
436
  show_protein_structure(result_temp_seq[4])
437
 
438
 
439
- elif option == 'activity prediction':
440
  st.markdown('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
441
  # st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
442
  sequence = st.text_input('protein sequence', '')
 
404
  expander.markdown(
405
  """<span style="word-wrap:break-word;">Contact prediction is based on a logistic regression over the model's attention maps. This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners. (Rao et al. 2020)The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.</span>
406
  """, unsafe_allow_html=True)
407
+ elif option == 'search the database for similar proteins':
408
  sequence = st.text_input('protein sequence', '')
409
  st.write('Try an example:')
410
  if st.button('Cas9 Enzyme'):
 
436
  show_protein_structure(result_temp_seq[4])
437
 
438
 
439
+ elif option == 'activity prediction with similar proteins':
440
  st.markdown('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
441
  # st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
442
  sequence = st.text_input('protein sequence', '')