xuyingli commited on
Commit
44a92c5
·
1 Parent(s): 9a88d36

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -327,7 +327,7 @@ if 'xq' not in st.session_state:
327
  expander.text("""Contact prediction is based on a logistic regression over the model's attention maps. \
328
  This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners.
329
  (Rao et al. 2020) The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.""")
330
- st.session_state['xq'] = model
331
  elif option == function_list[1]:
332
  sequence = st.text_input('protein sequence', '')
333
  st.write('Try an example:')
@@ -353,7 +353,7 @@ if 'xq' not in st.session_state:
353
  print(result_temp_seq[4])
354
 
355
  start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
356
- st.session_state['xq'] = model
357
  elif option == function_list[2]:
358
  st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
359
  sequence = st.text_input('protein sequence', '')
@@ -370,7 +370,7 @@ if 'xq' not in st.session_state:
370
  start[3] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
371
  else:
372
  start[3] = showmol(render_pdb(id = id_PDB))
373
- st.session_state['xq'] = model
374
 
375
  else:
376
  if st.session_state.query_num < len(messages):
 
327
  expander.text("""Contact prediction is based on a logistic regression over the model's attention maps. \
328
  This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners.
329
  (Rao et al. 2020) The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.""")
330
+ st.session_state['xq'] = st.session_state.model
331
  elif option == function_list[1]:
332
  sequence = st.text_input('protein sequence', '')
333
  st.write('Try an example:')
 
353
  print(result_temp_seq[4])
354
 
355
  start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
356
+ st.session_state['xq'] = st.session_state.model
357
  elif option == function_list[2]:
358
  st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
359
  sequence = st.text_input('protein sequence', '')
 
370
  start[3] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
371
  else:
372
  start[3] = showmol(render_pdb(id = id_PDB))
373
+ st.session_state['xq'] = st.session_state.model
374
 
375
  else:
376
  if st.session_state.query_num < len(messages):