Spaces:
Runtime error
Runtime error
File size: 20,571 Bytes
481cfc6 af8380f 481cfc6 b8f7a8b 481cfc6 b8f7a8b 1c470a9 481cfc6 b8f7a8b 481cfc6 1c470a9 481cfc6 1c470a9 481cfc6 1c470a9 481cfc6 1c470a9 481cfc6 1c470a9 481cfc6 b8f7a8b 481cfc6 d39bbe0 481cfc6 d39bbe0 481cfc6 d39bbe0 481cfc6 d39bbe0 481cfc6 1c470a9 481cfc6 d39bbe0 481cfc6 d39bbe0 481cfc6 1c470a9 481cfc6 1c470a9 481cfc6 b8f7a8b 1c470a9 481cfc6 b8f7a8b 1c470a9 481cfc6 b8f7a8b 1c470a9 481cfc6 b8f7a8b 1c470a9 481cfc6 b8f7a8b 481cfc6 b8f7a8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import streamlit as st
import torch
import esm
import requests
import matplotlib.pyplot as plt
from myscaledb import Client
import random
from collections import Counter
from tqdm import tqdm
from statistics import mean
import biotite.structure.io as bsio
import torch
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from stmol import *
import py3Dmol
# from streamlit_3Dmol import component_3dmol
import scipy
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.decomposition import PCA
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, SGDRegressor
from sklearn.pipeline import Pipeline
from streamlit.components.v1 import html
def init_esm():
msa_transformer, msa_transformer_alphabet = esm.pretrained.esm_msa1b_t12_100M_UR50S()
msa_transformer = msa_transformer.eval()
return msa_transformer, msa_transformer_alphabet
@st.experimental_singleton(show_spinner=False)
def init_db():
""" Initialize the Database Connection
Returns:
meta_field: Meta field that records if an image is viewed
client: Database connection object
"""
client = Client(
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
# We can check if the connection is alive
assert client.is_alive()
meta_field = {}
return meta_field, Client
def perdict_contact_visualization(seq, model, batch_converter):
data = [
("protein1", seq),
]
batch_labels, batch_strs, batch_tokens = batch_converter(data)
# Extract per-residue representations (on CPU)
with torch.no_grad():
results = model(batch_tokens, repr_layers=[12], return_contacts=True)
token_representations = results["representations"][12]
# Generate per-sequence representations via averaging
# NOTE: token 0 is always a beginning-of-sequence token, so the first residue is token 1.
sequence_representations = []
for i, (_, seq) in enumerate(data):
sequence_representations.append(token_representations[i, 1 : len(seq) + 1].mean(0))
# Look at the unsupervised self-attention map contact predictions
for (_, seq), attention_contacts in zip(data, results["contacts"]):
fig, ax = plt.subplots()
ax.matshow(attention_contacts[: len(seq), : len(seq)])
# fig.set_facecolor('black')
return fig
def visualize_3D_Coordinates(coords):
xs = []
ys = []
zs = []
for i in coords:
xs.append(i[0])
ys.append(i[1])
zs.append(i[2])
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')
ax.set_title('3D coordinates of $C_{b}$ backbone structure')
N = len(coords)
for i in range(len(coords) - 1):
ax.plot(
xs[i:i+2], ys[i:i+2], zs[i:i+2],
color=plt.cm.viridis(i/N),
marker='o'
)
return fig
def render_mol(pdb):
pdbview = py3Dmol.view()
pdbview.addModel(pdb,'pdb')
pdbview.setStyle({'cartoon':{'color':'spectrum'}})
pdbview.setBackgroundColor('white')#('0xeeeeee')
pdbview.zoomTo()
pdbview.zoom(2, 800)
pdbview.spin(True)
showmol(pdbview, height = 500,width=800)
def esm_search(model, sequnce, batch_converter,top_k=5):
data = [
("protein1", sequnce),
]
batch_labels, batch_strs, batch_tokens = batch_converter(data)
# Extract per-residue representations (on CPU)
with torch.no_grad():
results = model(batch_tokens, repr_layers=[12], return_contacts=True)
token_representations = results["representations"][12]
token_list = token_representations.tolist()[0][0][0]
client = Client(
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
result_temp_seq = []
for i in result:
# result_temp_coords = i['seq']
result_temp_seq.append(i['seq'])
result_temp_seq = list(set(result_temp_seq))
return result_temp_seq
def show_protein_structure(sequence):
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
}
response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/', headers=headers, data=sequence)
name = sequence[:3] + sequence[-3:]
pdb_string = response.content.decode('utf-8')
with open('predicted.pdb', 'w') as f:
f.write(pdb_string)
struct = bsio.load_structure('predicted.pdb', extra_fields=["b_factor"])
b_value = round(struct.b_factor.mean(), 4)
render_mol(pdb_string)
def KNN_search(sequence):
model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
batch_converter = alphabet.get_batch_converter()
model.eval()
data = [("protein1", sequence),
]
batch_labels, batch_strs, batch_tokens = batch_converter(data)
batch_lens = (batch_tokens != alphabet.padding_idx).sum(1)
with torch.no_grad():
results = model(batch_tokens, repr_layers=[33], return_contacts=True)
token_representations = results["representations"][33]
token_list = token_representations.tolist()[0][0]
print(token_list)
client = Client(
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
result = client.fetch("SELECT activity, distance('topK=10')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer")
result_temp_activity = []
for i in result:
# print(result_temp_seq)
result_temp_activity.append(i['activity'])
res_1 = sum(result_temp_activity)/len(result_temp_activity)
return res_1
def train_test_split_PCA(dataset):
ys = []
Xs = []
FASTA_PATH = '/root/xuying_experiments/esm-main/P62593.fasta'
EMB_PATH = '/root/xuying_experiments/esm-main/P62593_reprs'
for header, _seq in esm.data.read_fasta(FASTA_PATH):
scaled_effect = header.split('|')[-1]
ys.append(float(scaled_effect))
fn = f'{EMB_PATH}/{header}.pt'
embs = torch.load(fn)
Xs.append(embs['mean_representations'][34])
Xs = torch.stack(Xs, dim=0).numpy()
train_size = 0.8
Xs_train, Xs_test, ys_train, ys_test = train_test_split(Xs, ys, train_size=train_size, random_state=42)
return Xs_train, Xs_test, ys_train, ys_test
def PCA_visual(Xs_train):
num_pca_components = 60
pca = PCA(num_pca_components)
Xs_train_pca = pca.fit_transform(Xs_train)
fig_dims = (4, 4)
fig, ax = plt.subplots(figsize=fig_dims)
ax.set_title('Visualize Embeddings')
sc = ax.scatter(Xs_train_pca[:,0], Xs_train_pca[:,1], c=ys_train, marker='.')
ax.set_xlabel('PCA first principal component')
ax.set_ylabel('PCA second principal component')
plt.colorbar(sc, label='Variant Effect')
return fig
def KNN_trainings(Xs_train, Xs_test, ys_train, ys_test):
num_pca_components = 60
knn_grid = [
{
'model': [KNeighborsRegressor()],
'model__n_neighbors': [5, 10],
'model__weights': ['uniform', 'distance'],
'model__algorithm': ['ball_tree', 'kd_tree', 'brute'],
'model__leaf_size' : [15, 30],
'model__p' : [1, 2],
}]
cls_list = [KNeighborsRegressor]
param_grid_list = [knn_grid]
pipe = Pipeline(
steps = (
('pca', PCA(num_pca_components)),
('model', KNeighborsRegressor())
)
)
result_list = []
grid_list = []
for cls_name, param_grid in zip(cls_list, param_grid_list):
print(cls_name)
grid = GridSearchCV(
estimator = pipe,
param_grid = param_grid,
scoring = 'r2',
verbose = 1,
n_jobs = -1 # use all available cores
)
grid.fit(Xs_train, ys_train)
# print(Xs_train, ys_train)
result_list.append(pd.DataFrame.from_dict(grid.cv_results_))
grid_list.append(grid)
dataframe = pd.DataFrame(result_list[0].sort_values('rank_test_score')[:5])
return dataframe[['param_model','params','param_model__algorithm','mean_test_score','rank_test_score']]
st.markdown("""
<link
rel="stylesheet"
href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700&display=swap"
/>
""", unsafe_allow_html=True)
messages = [
f"""
Evolutionary-scale prediction of atomic level protein structure
ESM is a high-capacity Transformer trained with protein sequences \
as input. After training, the secondary and tertiary structure, \
function, homology and other information of the protein are in the feature representation output by the model.\
Check out https://esmatlas.com/ for more information.
We have 120k proteins features stored in our database.
The app uses MyScale to store and query protein sequence
using vector search.
"""
]
@st.experimental_singleton(show_spinner=False)
def init_random_query():
xq = np.random.rand(DIMS).tolist()
return xq, xq.copy()
with st.spinner("Connecting DB..."):
st.session_state.meta, client = init_db()
with st.spinner("Loading Models..."):
# Initialize SAGE model
if 'xq' not in st.session_state:
model, alphabet = init_esm()
batch_converter = alphabet.get_batch_converter()
st.session_state['batch'] = batch_converter
st.session_state.query_num = 0
if 'xq' not in st.session_state:
# If it's a fresh start
if st.session_state.query_num < len(messages):
msg = messages[0]
else:
msg = messages[-1]
with st.container():
st.title("Evolutionary Scale Modeling")
start = [st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty()]
start[0].info(msg)
function_list = ('self-contact prediction',
'search the database for similar proteins',
'activity prediction with similar proteins',
'PDB viewer')
option = st.selectbox('Application options', function_list)
st.session_state.db_name_ref = 'default.esm_protein'
if option == function_list[0]:
sequence = st.text_input('protein sequence', '')
if st.button('Cas9 Enzyme'):
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
elif st.button('PETase'):
sequence = 'MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ'
if sequence:
st.write('')
start[2] = st.pyplot(perdict_contact_visualization(sequence, model, batch_converter))
expander = st.expander("See explanation")
expander.text("""Contact prediction is based on a logistic regression over the model's attention maps. \
This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners.
(Rao et al. 2020) The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.""")
st.session_state['xq'] = model
elif option == function_list[1]:
sequence = st.text_input('protein sequence', '')
st.write('Try an example:')
if st.button('Cas9 Enzyme'):
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
elif st.button('PETase'):
sequence = 'MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ'
if sequence:
st.write('you have entered: ', sequence)
result_temp_seq = esm_search(model, sequence, esm_search,top_k=5)
st.text('search result: ')
# tab1, tab2, tab3, tab4, = st.tabs(["Cat", "Dog", "Owl"])
if st.button(result_temp_seq[0]):
print(result_temp_seq[0])
elif st.button(result_temp_seq[1]):
print(result_temp_seq[1])
elif st.button(result_temp_seq[2]):
print(result_temp_seq[2])
elif st.button(result_temp_seq[3]):
print(result_temp_seq[3])
elif st.button(result_temp_seq[4]):
print(result_temp_seq[4])
start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
st.session_state['xq'] = model
elif option == function_list[2]:
st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
sequence = st.text_input('protein sequence', '')
st.write('Try an example:')
if st.button('Cas9 Enzyme'):
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
elif st.button('PETase'):
sequence = 'MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ'
elif option == function_list[3]:
id_PDB = st.text_input('enter PDB ID', '')
residues_marker = st.text_input('residues class', '')
if residues_marker:
start[3] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
else:
start[3] = showmol(render_pdb(id = id_PDB))
st.session_state['xq'] = model
else:
if st.session_state.query_num < len(messages):
msg = messages[0]
else:
msg = messages[-1]
with st.container():
st.title("Evolutionary Scale Modeling")
start = [st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty()]
start[0].info(msg)
option = st.selectbox('Application options', ('self-contact prediction', 'search the database', 'activity prediction','PDB viewer'))
st.session_state.db_name_ref = 'default.esm_protein'
if option == 'self-contact prediction':
sequence = st.text_input('protein sequence', '')
if st.button('Cas9 Enzyme'):
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
elif st.button('PETase'):
sequence = 'MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ'
if sequence:
st.write('you have entered: ',sequence)
start[2] = st.pyplot(perdict_contact_visualization(sequence, st.session_state['xq'], st.session_state['batch']))
expander = st.expander("See explanation")
expander.markdown(
"""<span style="word-wrap:break-word;">Contact prediction is based on a logistic regression over the model's attention maps. This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners. (Rao et al. 2020)The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.</span>
""", unsafe_allow_html=True)
elif option == 'search the database':
sequence = st.text_input('protein sequence', '')
st.write('Try an example:')
if st.button('Cas9 Enzyme'):
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
elif st.button('PETase'):
sequence = 'MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ'
if sequence:
st.write('you have entered: ', sequence)
result_temp_seq = esm_search(st.session_state['xq'], sequence, st.session_state['batch'] ,top_k=10)
st.text('search result (top 5): ')
# tab1, tab2, tab3, tab4, = st.tabs(["Cat", "Dog", "Owl"])
tab1, tab2, tab3 , tab4, tab5 = st.tabs(['1','2','3','4','5'])
with tab1:
st.write(result_temp_seq[0])
show_protein_structure(result_temp_seq[0])
with tab2:
st.write(result_temp_seq[1])
show_protein_structure(result_temp_seq[1])
with tab3:
st.write(result_temp_seq[2])
show_protein_structure(result_temp_seq[2])
with tab4:
st.write(result_temp_seq[3])
show_protein_structure(result_temp_seq[3])
with tab5:
st.write(result_temp_seq[4])
show_protein_structure(result_temp_seq[4])
elif option == 'activity prediction':
st.markdown('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
# st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
sequence = st.text_input('protein sequence', '')
st.write('Try an example:')
if st.button('Cas9 Enzyme'):
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
elif st.button('PETase'):
sequence = 'MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ'
if sequence:
st.write('you have entered: ',sequence)
res_knn = KNN_search(sequence)
st.subheader('KNN predictor result')
start[2] = st.markdown("Activity prediction: " + str(res_knn))
elif option == 'PDB viewer':
id_PDB = st.text_input('enter PDB ID', '')
residues_marker = st.text_input('residues class', '')
st.write('Try an example:')
if st.button('PDB ID: 1A2C / residues class: ALA'):
id_PDB = '1A2C'
residues_marker = 'ALA'
st.subheader('PDB viewer')
if residues_marker:
start[7] = showmol(render_pdb_resn(viewer = render_pdb(id = id_PDB),resn_lst = [residues_marker]))
else:
start[7] = showmol(render_pdb(id = id_PDB))
expander = st.expander("See explanation")
expander.markdown("""
A PDB ID is a unique 4-character code for each entry in the Protein Data Bank. The first character must be a number between 1 and 9, and the remaining three characters can be letters or numbers.
see https://www.rcsb.org/ for more information.
""") |