ChatData / app.py
mpsk's picture
Update app.py
0dd8fb3
raw
history blame
13.4 kB
import re
import pandas as pd
from os import environ
import streamlit as st
import datetime
environ['TOKENIZERS_PARALLELISM'] = 'true'
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
from langchain.vectorstores import MyScale, MyScaleSettings
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from sqlalchemy import create_engine, MetaData
from langchain.chains import LLMChain
from langchain_experimental.utilities.sql_database import SQLDatabase
from langchain_experimental.retrievers.sql_database import SQLDatabaseChainRetriever
from langchain_experimental.sql.base import SQLDatabaseChain
from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser
from chains.arxiv_chains import ArXivQAwithSourcesChain, ArXivStuffDocumentChain
from callbacks.arxiv_callbacks import ChatDataSelfSearchCallBackHandler, \
ChatDataSelfAskCallBackHandler, ChatDataSQLSearchCallBackHandler, \
ChatDataSQLAskCallBackHandler
from prompts.arxiv_prompt import combine_prompt_template, _myscale_prompt
st.set_page_config(page_title="ChatData")
st.header("ChatData")
columns = ['ref_id', 'title', 'id', 'categories', 'abstract', 'authors', 'pubdate']
def try_eval(x):
try:
return eval(x, {'datetime': datetime})
except:
return x
def display(dataframe, columns=None, index=None):
if index:
dataframe.set_index(index)
if len(dataframe) > 0:
if columns:
st.dataframe(dataframe[columns])
else:
st.dataframe(dataframe)
else:
st.write("Sorry 😵 we didn't find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype.", unsafe_allow_html=True)
@st.cache_resource
def build_retriever():
with st.spinner("Loading Model..."):
embeddings = HuggingFaceInstructEmbeddings(
model_name='hkunlp/instructor-xl',
embed_instruction="Represent the question for retrieving supporting scientific papers: ")
with st.spinner("Connecting DB..."):
myscale_connection = {
"host": st.secrets['MYSCALE_HOST'],
"port": st.secrets['MYSCALE_PORT'],
"username": st.secrets['MYSCALE_USER'],
"password": st.secrets['MYSCALE_PASSWORD'],
}
config = MyScaleSettings(**myscale_connection, table='ChatArXiv',
column_map={
"id": "id",
"text": "abstract",
"vector": "vector",
"metadata": "metadata"
})
doc_search = MyScale(embeddings, config)
with st.spinner("Building Self Query Retriever..."):
metadata_field_info = [
AttributeInfo(
name="pubdate",
description="The year the paper is published",
type="timestamp",
),
AttributeInfo(
name="authors",
description="List of author names",
type="list[string]",
),
AttributeInfo(
name="title",
description="Title of the paper",
type="string",
),
AttributeInfo(
name="categories",
description="arxiv categories to this paper",
type="list[string]"
),
AttributeInfo(
name="length(categories)",
description="length of arxiv categories to this paper",
type="int"
),
]
retriever = SelfQueryRetriever.from_llm(
OpenAI(openai_api_key=st.secrets['OPENAI_API_KEY'], temperature=0),
doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
use_original_query=False)
document_with_metadata_prompt = PromptTemplate(
input_variables=["page_content", "id", "title", "ref_id",
"authors", "pubdate", "categories"],
template="Title for PDF #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}")
COMBINE_PROMPT = ChatPromptTemplate.from_strings(
string_messages=[(SystemMessagePromptTemplate, combine_prompt_template),
(HumanMessagePromptTemplate, '{question}')])
OPENAI_API_KEY = st.secrets['OPENAI_API_KEY']
with st.spinner('Building QA Chain with Self-query...'):
chain = ArXivQAwithSourcesChain(
retriever=retriever,
combine_documents_chain=ArXivStuffDocumentChain(
llm_chain=LLMChain(
prompt=COMBINE_PROMPT,
llm=ChatOpenAI(model_name='gpt-3.5-turbo-16k',
openai_api_key=OPENAI_API_KEY, temperature=0.6),
),
document_prompt=document_with_metadata_prompt,
document_variable_name="summaries",
),
return_source_documents=True,
max_tokens_limit=12000,
)
with st.spinner('Building Vector SQL Database Retriever'):
MYSCALE_USER = st.secrets['MYSCALE_USER']
MYSCALE_PASSWORD = st.secrets['MYSCALE_PASSWORD']
MYSCALE_HOST = st.secrets['MYSCALE_HOST']
MYSCALE_PORT = st.secrets['MYSCALE_PORT']
engine = create_engine(
f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/default?protocol=https')
metadata = MetaData(bind=engine)
PROMPT = PromptTemplate(
input_variables=["input", "table_info", "top_k"],
template=_myscale_prompt,
)
output_parser = VectorSQLRetrieveCustomOutputParser.from_embeddings(
model=embeddings)
sql_query_chain = SQLDatabaseChain.from_llm(
llm=OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0),
prompt=PROMPT,
top_k=10,
return_direct=True,
db=SQLDatabase(engine, None, metadata, max_string_length=1024),
sql_cmd_parser=output_parser,
native_format=True
)
sql_retriever = SQLDatabaseChainRetriever(
sql_db_chain=sql_query_chain, page_content_key="abstract")
with st.spinner('Building QA Chain with Vector SQL...'):
sql_chain = ArXivQAwithSourcesChain(
retriever=sql_retriever,
combine_documents_chain=ArXivStuffDocumentChain(
llm_chain=LLMChain(
prompt=COMBINE_PROMPT,
llm=ChatOpenAI(model_name='gpt-3.5-turbo-16k',
openai_api_key=OPENAI_API_KEY, temperature=0.6),
),
document_prompt=document_with_metadata_prompt,
document_variable_name="summaries",
),
return_source_documents=True,
max_tokens_limit=12000,
)
return [{'name': m.name, 'desc': m.description, 'type': m.type} for m in metadata_field_info], retriever, chain, sql_retriever, sql_chain
if 'retriever' not in st.session_state:
st.session_state['metadata_columns'], \
st.session_state['retriever'], \
st.session_state['chain'], \
st.session_state['sql_retriever'], \
st.session_state['sql_chain'] = build_retriever()
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
"For example: \n\n"
"*If you want to search papers with complex filters*:\n\n"
"- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n"
"*If you want to ask questions based on papers in database*:\n\n"
"- What is PageRank?\n"
"- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n"
"- Introduce some applications of GANs published around 2019.\n"
"- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n"
"- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?")
tab_sql, tab_self_query = st.tabs(['Vector SQL', 'Self-Query Retrievers'])
with tab_sql:
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.markdown('''```sql
CREATE TABLE default.ChatArXiv (
`abstract` String,
`id` String,
`vector` Array(Float32),
`metadata` Object('JSON'),
`pubdate` DateTime,
`title` String,
`categories` Array(String),
`authors` Array(String),
`comment` String,
`primary_category` String,
VECTOR INDEX vec_idx vector TYPE MSTG('metric_type=Cosine'),
CONSTRAINT vec_len CHECK length(vector) = 768)
ENGINE = ReplacingMergeTree ORDER BY id
```''')
st.text_input("Ask a question:", key='query_sql')
cols = st.columns([1, 1, 7])
cols[0].button("Query", key='search_sql')
cols[1].button("Ask", key='ask_sql')
plc_hldr = st.empty()
if st.session_state.search_sql:
plc_hldr = st.empty()
print(st.session_state.query_sql)
with plc_hldr.expander('Query Log', expanded=True):
callback = ChatDataSQLSearchCallBackHandler()
try:
docs = st.session_state.sql_retriever.get_relevant_documents(
st.session_state.query_sql, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs)
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
if st.session_state.ask_sql:
plc_hldr = st.empty()
print(st.session_state.query_sql)
with plc_hldr.expander('Chat Log', expanded=True):
callback = ChatDataSQLAskCallBackHandler()
try:
ret = st.session_state.sql_chain(
st.session_state.query_sql, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['sources']
docs = pd.DataFrame([{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, columns, index='ref_id')
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
with tab_self_query:
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.dataframe(st.session_state.metadata_columns)
st.text_input("Ask a question:", key='query_self')
cols = st.columns([1, 1, 7])
cols[0].button("Query", key='search_self')
cols[1].button("Ask", key='ask_self')
plc_hldr = st.empty()
if st.session_state.search_self:
plc_hldr = st.empty()
print(st.session_state.query_self)
with plc_hldr.expander('Query Log', expanded=True):
call_back = None
callback = ChatDataSelfSearchCallBackHandler()
try:
docs = st.session_state.retriever.get_relevant_documents(
st.session_state.query_self, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, columns)
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
if st.session_state.ask_self:
plc_hldr = st.empty()
print(st.session_state.query_self)
with plc_hldr.expander('Chat Log', expanded=True):
call_back = None
callback = ChatDataSelfAskCallBackHandler()
try:
ret = st.session_state.chain(
st.session_state.query_self, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['sources']
docs = pd.DataFrame([{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, columns, index='ref_id')
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e