ChatData / ui /home.py
lqhl's picture
Synced repo using 'sync_with_huggingface' Github Action
c173a99 verified
raw
history blame
6.76 kB
import base64
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.card import card
from streamlit_extras.colored_header import colored_header
from streamlit_extras.mention import mention
from streamlit_extras.tags import tagger_component
from logger import logger
import os
import streamlit as st
from auth0_component import login_button
from backend.constants.variables import JUMP_QUERY_ASK, USER_INFO, USER_NAME, DIVIDER_HTML, DIVIDER_THIN_HTML
from streamlit_extras.let_it_rain import rain
def render_home():
render_home_header()
# st.divider()
# st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True)
add_vertical_space(5)
render_home_content()
# st.divider()
st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True)
render_home_footer()
def render_home_header():
logger.info("render home header")
st.header("ChatData - Your Intelligent Assistant")
st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True)
st.markdown("> [ChatData](https://github.com/myscale/ChatData) \
is developed by [MyScale](https://myscale.com/), \
it's an integration of [LangChain](https://www.langchain.com/) \
and [MyScaleDB](https://github.com/myscale/myscaledb)")
tagger_component(
"Keywords:",
["MyScaleDB", "LangChain", "VectorSearch", "ChatBot", "GPT", "arxiv", "wikipedia", "Personal Knowledge Base πŸ“š"],
color_name=["darkslateblue", "green", "orange", "darkslategrey", "red", "crimson", "darkcyan", "darkgrey"],
)
text, col1, col2, col3, _ = st.columns([1, 1, 1, 1, 4])
with text:
st.markdown("Related:")
with col1.container():
mention(
label="streamlit",
icon="streamlit",
url="https://streamlit.io/",
write=True
)
with col2.container():
mention(
label="langchain",
icon="πŸ¦œπŸ”—",
url="https://www.langchain.com/",
write=True
)
with col3.container():
mention(
label="streamlit-extras",
icon="πŸͺ’",
url="https://github.com/arnaudmiribel/streamlit-extras",
write=True
)
def _render_self_query_chain_content():
col1, col2 = st.columns([1, 1], gap='large')
with col1.container():
st.image(image='./assets/home_page_background_1.png',
caption=None,
width=None,
use_column_width=True,
clamp=False,
channels="RGB",
output_format="PNG")
with col2.container():
st.header("VectorSearch & SelfQuery with Sources")
st.info("In this sample, you will learn how **LangChain** integrates with **MyScaleDB**.")
st.markdown("""This example demonstrates two methods for integrating MyScale into LangChain: [Vector SQL](https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html) and [Self-querying retriever](https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/myscale_self_query/). For each method, you can choose one of the following options:
1. `Retrieve from MyScaleDB ➑️` - The LLM (GPT) converts user queries into SQL statements with vector search, executes these searches in MyScaleDB, and retrieves relevant content.
2. `Retrieve and answer with LLM ➑️` - After retrieving relevant content from MyScaleDB, the user query along with the retrieved content is sent to the LLM (GPT), which then provides a comprehensive answer.""")
add_vertical_space(3)
_, middle, _ = st.columns([2, 1, 2], gap='small')
with middle.container():
st.session_state[JUMP_QUERY_ASK] = st.button("Try sample", use_container_width=False, type="secondary")
def _render_chat_bot_content():
col1, col2 = st.columns(2, gap='large')
with col1.container():
st.image(image='./assets/home_page_background_2.png',
caption=None,
width=None,
use_column_width=True,
clamp=False,
channels="RGB",
output_format="PNG")
with col2.container():
st.header("Chat Bot")
st.info("Now you can try our chatbot, this chatbot is built with MyScale and LangChain.")
st.markdown("- You need to log in. We use `user_name` to identify each customer.")
st.markdown("- You can upload your own PDF files and build your own knowledge base. \
(This is just a sample application. Please do not upload important or confidential files.)")
st.markdown("- A default session will be assigned as your initial chat session. \
You can create and switch to other sessions to jump between different chat conversations.")
add_vertical_space(1)
_, middle, _ = st.columns([1, 2, 1], gap='small')
with middle.container():
if USER_NAME not in st.session_state:
login_button(clientId=os.environ["AUTH0_CLIENT_ID"],
domain=os.environ["AUTH0_DOMAIN"],
key="auth0")
# if user_info:
# user_name = user_info.get("nickname", "default") + "_" + user_info.get("email", "null")
# st.session_state[USER_NAME] = user_name
# print(user_info)
def render_home_content():
logger.info("render home content")
_render_self_query_chain_content()
add_vertical_space(3)
_render_chat_bot_content()
def render_home_footer():
logger.info("render home footer")
st.write(
"Please follow us on [Twitter](https://x.com/myscaledb) and [Discord](https://discord.gg/D2qpkqc4Jq)!"
)
st.write(
"For more details, please refer to [our repository on GitHub](https://github.com/myscale/ChatData)!")
st.write("Our [privacy policy](https://myscale.com/privacy/), [terms of service](https://myscale.com/terms/)")
# st.write(
# "Recommended to use the standalone version of Chat-Data, "
# "available [here](https://myscale-chatdata.hf.space/)."
# )
if st.session_state.auth0 is not None:
st.session_state[USER_INFO] = dict(st.session_state.auth0)
if 'email' in st.session_state[USER_INFO]:
email = st.session_state[USER_INFO]["email"]
else:
email = f"{st.session_state[USER_INFO]['nickname']}@{st.session_state[USER_INFO]['sub']}"
st.session_state["user_name"] = email
del st.session_state.auth0
st.rerun()
if st.session_state.jump_query_ask:
st.rerun()