ChatData / app.py
Fangrui Liu
init
a796108
raw
history blame
6.97 kB
import re
import pandas as pd
from os import environ
import streamlit as st
from langchain.vectorstores import MyScale, MyScaleSettings
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.chains import RetrievalQAWithSourcesChain
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from prompts.arxiv_prompt import combine_prompt_template
from callbacks.arxiv_callbacks import ChatDataSearchCallBackHandler, ChatDataAskCallBackHandler
from langchain.prompts.prompt import PromptTemplate
environ['TOKENIZERS_PARALLELISM'] = 'true'
st.set_page_config(page_title="ChatData")
st.header("ChatData")
columns = ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate']
def display(dataframe, columns):
if len(docs) > 0:
st.dataframe(dataframe[columns])
else:
st.write("Sorry 😡 we didn't find any articles related to your query.\nPlease use verbs that may match the datatype.", unsafe_allow_html=True)
@st.experimental_singleton(show_spinner=False)
def build_retriever():
with st.spinner("Loading Model..."):
embeddings = HuggingFaceInstructEmbeddings(
model_name='hkunlp/instructor-xl',
embed_instruction="Represent the question for retrieving supporting scientific papers: ")
with st.spinner("Connecting DB..."):
myscale_connection = {
"host": st.secrets['MYSCALE_HOST'],
"port": st.secrets['MYSCALE_PORT'],
"username": st.secrets['MYSCALE_USER'],
"password": st.secrets['MYSCALE_PASSWORD'],
}
config = MyScaleSettings(**myscale_connection, table='ChatArXiv',
column_map={
"id": "id",
"text": "abstract",
"vector": "vector",
"metadata": "metadata"
})
doc_search = MyScale(embeddings, config)
with st.spinner("Building Self Query Retriever..."):
metadata_field_info = [
AttributeInfo(
name="pubdate",
description="The year the paper is published",
type="timestamp",
),
AttributeInfo(
name="authors",
description="List of author names",
type="list[string]",
),
AttributeInfo(
name="title",
description="Title of the paper",
type="string",
),
AttributeInfo(
name="categories",
description="arxiv categories to this paper",
type="list[string]"
),
AttributeInfo(
name="length(categories)",
description="length of arxiv categories to this paper",
type="int"
),
]
retriever = SelfQueryRetriever.from_llm(
OpenAI(openai_api_key=st.secrets['OPENAI_API_KEY'], temperature=0),
doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
use_original_query=False)
with st.spinner('Building RetrievalQAWith SourcesChain...'):
document_with_metadata_prompt = PromptTemplate(
input_variables=["page_content", "id", "title", "authors"],
template="Content:\n\tTitle: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\nSOURCE: {id}")
COMBINE_PROMPT = PromptTemplate(
template=combine_prompt_template, input_variables=["summaries", "question"])
chain = RetrievalQAWithSourcesChain.from_llm(
llm=ChatOpenAI(
openai_api_key=st.secrets['OPENAI_API_KEY'], temperature=0.6),
document_prompt=document_with_metadata_prompt,
combine_prompt=COMBINE_PROMPT,
retriever=retriever,
return_source_documents=True,)
return [{'name': m.name, 'desc': m.description, 'type': m.type} for m in metadata_field_info], retriever, chain
if 'retriever' not in st.session_state:
st.session_state['metadata_columns'], \
st.session_state['retriever'], \
st.session_state['chain'] = \
build_retriever()
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n" +
"For example: \n\n- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n" +
"- What is neural network? Please use articles published by Geoffrey Hinton after 2018.\n" +
"- Introduce some applications of GANs published around 2019.")
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='πŸ’‘')
st.dataframe(st.session_state.metadata_columns)
st.text_input("Ask a question:", key='query')
cols = st.columns([1, 1, 7])
cols[0].button("Query", key='search')
cols[1].button("Ask", key='ask')
plc_hldr = st.empty()
if st.session_state.search:
plc_hldr = st.empty()
with plc_hldr.expander('Query Log', expanded=True):
call_back = None
callback = ChatDataSearchCallBackHandler()
try:
docs = st.session_state.retriever.get_relevant_documents(
st.session_state.query, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, columns)
except Exception as e:
st.write('Oops 😡 Something bad happened...')
# raise e
if st.session_state.ask:
plc_hldr = st.empty()
ctx = st.container()
with plc_hldr.expander('Chat Log', expanded=True):
call_back = None
callback = ChatDataAskCallBackHandler()
try:
ret = st.session_state.chain(
st.session_state.query, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['source_documents']
ref = re.findall(
'(http://arxiv.org/abs/\d{4}.\d+v\d)', ret['sources'])
docs = pd.DataFrame([{**d.metadata, 'abstract': d.page_content}
for d in docs if d.metadata['id'] in ref])
display(docs, columns)
except Exception as e:
st.write('Oops 😡 Something bad happened...')
# raise e