File size: 22,441 Bytes
19bd5a9
 
 
 
04f0bde
19bd5a9
 
 
06665fc
 
 
19bd5a9
 
 
 
 
 
 
 
 
0e573d0
19bd5a9
 
 
 
 
 
 
 
 
 
06665fc
19bd5a9
 
 
 
 
 
 
 
 
 
 
0e573d0
06665fc
19bd5a9
 
0e573d0
 
c6f6149
19bd5a9
 
 
c6f6149
 
19bd5a9
 
 
6e4cf72
 
19bd5a9
 
 
 
 
 
 
 
04f0bde
19bd5a9
 
 
0e573d0
042a946
 
 
 
 
 
19bd5a9
0e573d0
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
 
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
 
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
19bd5a9
 
 
 
 
0e573d0
 
19bd5a9
 
 
 
0e573d0
 
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
 
19bd5a9
 
 
 
 
 
 
 
 
 
0e573d0
 
 
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
19bd5a9
04f0bde
19bd5a9
 
 
 
 
 
04f0bde
19bd5a9
04f0bde
 
19bd5a9
04f0bde
19bd5a9
0e573d0
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab8405
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
06665fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
19bd5a9
 
 
 
 
 
 
 
0e573d0
 
fab8405
19bd5a9
0e573d0
19bd5a9
fab8405
0e573d0
19bd5a9
 
 
0e573d0
19bd5a9
 
 
0e573d0
19bd5a9
 
06665fc
19bd5a9
 
0e573d0
19bd5a9
 
 
 
042a946
19bd5a9
 
 
 
 
 
 
0e573d0
19bd5a9
042a946
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
0e573d0
 
06665fc
 
 
0e573d0
06665fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f6149
06665fc
0e573d0
06665fc
 
 
 
 
 
 
0e573d0
 
19bd5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
042a946
06665fc
 
042a946
19bd5a9
 
0e573d0
042a946
0e573d0
06665fc
 
c6f6149
 
042a946
 
 
 
c6f6149
042a946
0e573d0
042a946
19bd5a9
 
 
 
 
 
 
 
 
 
 
0e573d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

import json
import time
import hashlib
from typing import Dict, Any, List, Tuple
import re
from os import environ
import streamlit as st
from langchain.schema import BaseRetriever
from langchain.tools import Tool
from langchain.pydantic_v1 import BaseModel, Field

from sqlalchemy import Column, Text, create_engine, MetaData
from langchain.agents import AgentExecutor
try:
    from sqlalchemy.orm import declarative_base
except ImportError:
    from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from clickhouse_sqlalchemy import (
    types, engines
)
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
from langchain.utilities.sql_database import SQLDatabase
from langchain.chains import LLMChain
from sqlalchemy import create_engine, MetaData
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
    SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema import BaseRetriever, Document
from langchain import OpenAI
from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.retrievers.self_query.myscale import MyScaleTranslator
from langchain.embeddings import HuggingFaceInstructEmbeddings, SentenceTransformerEmbeddings
from langchain.vectorstores import MyScaleSettings
from chains.arxiv_chains import MyScaleWithoutMetadataJson
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts.chat import MessagesPlaceholder
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import AgentTokenBufferMemory
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.schema.messages import BaseMessage, HumanMessage, AIMessage, FunctionMessage, \
    SystemMessage, ChatMessage, ToolMessage
from langchain.memory import SQLChatMessageHistory
from langchain.memory.chat_message_histories.sql import \
    DefaultMessageConverter
from langchain.schema.messages import BaseMessage
# from langchain.agents.agent_toolkits import create_retriever_tool
from prompts.arxiv_prompt import combine_prompt_template, _myscale_prompt
from chains.arxiv_chains import ArXivQAwithSourcesChain, ArXivStuffDocumentChain
from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser
from .json_conv import CustomJSONEncoder

environ['TOKENIZERS_PARALLELISM'] = 'true'
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']

query_model_name = "gpt-3.5-turbo-0125"
chat_model_name = "gpt-3.5-turbo-0125"


OPENAI_API_KEY = st.secrets['OPENAI_API_KEY']
OPENAI_API_BASE = st.secrets['OPENAI_API_BASE']
MYSCALE_USER = st.secrets['MYSCALE_USER']
MYSCALE_PASSWORD = st.secrets['MYSCALE_PASSWORD']
MYSCALE_HOST = st.secrets['MYSCALE_HOST']
MYSCALE_PORT = st.secrets['MYSCALE_PORT']
UNSTRUCTURED_API = st.secrets['UNSTRUCTURED_API']

COMBINE_PROMPT = ChatPromptTemplate.from_strings(
    string_messages=[(SystemMessagePromptTemplate, combine_prompt_template),
                     (HumanMessagePromptTemplate, '{question}')])
DEFAULT_SYSTEM_PROMPT = (
    "Do your best to answer the questions. "
    "Feel free to use any tools available to look up "
    "relevant information. Please keep all details in query "
    "when calling search functions."
)


def hint_arxiv():
    st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
            "For example: \n\n"
            "*If you want to search papers with complex filters*:\n\n"
            "- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n"
            "*If you want to ask questions based on papers in database*:\n\n"
            "- What is PageRank?\n"
            "- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n"
            "- Introduce some applications of GANs published around 2019.\n"
            "- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n"
            "- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n"
            "- Is it possible to synthesize room temperature super conductive material?")


def hint_sql_arxiv():
    st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
    st.markdown('''```sql
CREATE TABLE default.ChatArXiv (
    `abstract` String, 
    `id` String, 
    `vector` Array(Float32), 
    `metadata` Object('JSON'), 
    `pubdate` DateTime,
    `title` String,
    `categories` Array(String),
    `authors` Array(String), 
    `comment` String,
    `primary_category` String,
    VECTOR INDEX vec_idx vector TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'), 
    CONSTRAINT vec_len CHECK length(vector) = 768) 
ENGINE = ReplacingMergeTree ORDER BY id
```''')


def hint_wiki():
    st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
            "For example: \n\n"
            "- Which company did Elon Musk found?\n"
            "- What is Iron Gwazi?\n"
            "- What is a Ring in mathematics?\n"
            "- 苹果的发源地是那里?\n")


def hint_sql_wiki():
    st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
    st.markdown('''```sql
CREATE TABLE wiki.Wikipedia (
    `id` String, 
    `title` String, 
    `text` String, 
    `url` String, 
    `wiki_id` UInt64, 
    `views` Float32, 
    `paragraph_id` UInt64, 
    `langs` UInt32, 
    `emb` Array(Float32), 
    VECTOR INDEX vec_idx emb TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'), 
    CONSTRAINT emb_len CHECK length(emb) = 768) 
ENGINE = ReplacingMergeTree ORDER BY id
```''')


sel_map = {
    'Wikipedia': {
        "database": "wiki",
        "table": "Wikipedia",
        "hint": hint_wiki,
        "hint_sql": hint_sql_wiki,
        "doc_prompt": PromptTemplate(
            input_variables=["page_content",
                             "url", "title", "ref_id", "views"],
            template="Title for Doc #{ref_id}: {title}\n\tviews: {views}\n\tcontent: {page_content}\nSOURCE: {url}"),
        "metadata_cols": [
            AttributeInfo(
                name="title",
                description="title of the wikipedia page",
                type="string",
            ),
            AttributeInfo(
                name="text",
                description="paragraph from this wiki page",
                type="string",
            ),
            AttributeInfo(
                name="views",
                description="number of views",
                type="float"
            ),
        ],
        "must_have_cols": ['id', 'title', 'url', 'text', 'views'],
        "vector_col": "emb",
        "text_col": "text",
        "metadata_col": "metadata",
        "emb_model": lambda: SentenceTransformerEmbeddings(
            model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2',),
        "tool_desc": ("search_among_wikipedia", "Searches among Wikipedia and returns related wiki pages"),
    },
    'ArXiv Papers': {
        "database": "default",
        "table": "ChatArXiv",
        "hint": hint_arxiv,
        "hint_sql": hint_sql_arxiv,
        "doc_prompt": PromptTemplate(
            input_variables=["page_content", "id", "title", "ref_id",
                             "authors", "pubdate", "categories"],
            template="Title for Doc #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}"),
        "metadata_cols": [
            AttributeInfo(
                name=VirtualColumnName(name="pubdate"),
                description="The year the paper is published",
                type="timestamp",
            ),
            AttributeInfo(
                name="authors",
                description="List of author names",
                type="list[string]",
            ),
            AttributeInfo(
                name="title",
                description="Title of the paper",
                type="string",
            ),
            AttributeInfo(
                name="categories",
                description="arxiv categories to this paper",
                type="list[string]"
            ),
            AttributeInfo(
                name="length(categories)",
                description="length of arxiv categories to this paper",
                type="int"
            ),
        ],
        "must_have_cols": ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate'],
        "vector_col": "vector",
        "text_col": "abstract",
        "metadata_col": "metadata",
        "emb_model": lambda: HuggingFaceInstructEmbeddings(
            model_name='hkunlp/instructor-xl',
            embed_instruction="Represent the question for retrieving supporting scientific papers: "),
        "tool_desc": ("search_among_scientific_papers", "Searches among scientific papers from ArXiv and returns research papers"),
    }
}


def build_embedding_model(_sel):
    """Build embedding model
    """
    with st.spinner("Loading Model..."):
        embeddings = sel_map[_sel]["emb_model"]()
    return embeddings


def build_chains_retrievers(_sel: str) -> Dict[str, Any]:
    """build chains and retrievers

    :param _sel: selected knowledge base
    :type _sel: str
    :return: _description_
    :rtype: Dict[str, Any]
    """
    metadata_field_info = sel_map[_sel]["metadata_cols"]
    retriever = build_self_query(_sel)
    chain = build_qa_chain(_sel, retriever, name="Self Query Retriever")
    sql_retriever = build_vector_sql(_sel)
    sql_chain = build_qa_chain(_sel, sql_retriever, name="Vector SQL")

    return {
        "metadata_columns": [{'name': m.name.name if type(m.name) is VirtualColumnName else m.name, 'desc': m.description, 'type': m.type} for m in metadata_field_info],
        "retriever": retriever,
        "chain": chain,
        "sql_retriever": sql_retriever,
        "sql_chain": sql_chain
    }


def build_self_query(_sel: str) -> SelfQueryRetriever:
    """Build self querying retriever

    :param _sel: selected knowledge base
    :type _sel: str
    :return: retriever used by chains
    :rtype: SelfQueryRetriever
    """
    with st.spinner(f"Connecting DB for {_sel}..."):
        myscale_connection = {
            "host": MYSCALE_HOST,
            "port": MYSCALE_PORT,
            "username": MYSCALE_USER,
            "password": MYSCALE_PASSWORD,
        }
        config = MyScaleSettings(**myscale_connection,
                                 database=sel_map[_sel]["database"],
                                 table=sel_map[_sel]["table"],
                                 column_map={
                                     "id": "id",
                                     "text": sel_map[_sel]["text_col"],
                                     "vector": sel_map[_sel]["vector_col"],
                                     "metadata": sel_map[_sel]["metadata_col"]
                                 })
        doc_search = MyScaleWithoutMetadataJson(st.session_state[f"emb_model_{_sel}"], config,
                                                must_have_cols=sel_map[_sel]['must_have_cols'])

    with st.spinner(f"Building Self Query Retriever for {_sel}..."):
        metadata_field_info = sel_map[_sel]["metadata_cols"]
        retriever = SelfQueryRetriever.from_llm(
            OpenAI(model_name=query_model_name,
                   openai_api_key=OPENAI_API_KEY, temperature=0),
            doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
            use_original_query=False, structured_query_translator=MyScaleTranslator())
    return retriever


def build_vector_sql(_sel: str) -> VectorSQLDatabaseChainRetriever:
    """Build Vector SQL Database Retriever

    :param _sel: selected knowledge base
    :type _sel: str
    :return: retriever used by chains
    :rtype: VectorSQLDatabaseChainRetriever
    """
    with st.spinner(f'Building Vector SQL Database Retriever for {_sel}...'):
        engine = create_engine(
            f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/{sel_map[_sel]["database"]}?protocol=https')
        metadata = MetaData(bind=engine)
        PROMPT = PromptTemplate(
            input_variables=["input", "table_info", "top_k"],
            template=_myscale_prompt,
        )
        output_parser = VectorSQLRetrieveCustomOutputParser.from_embeddings(
            model=st.session_state[f'emb_model_{_sel}'], must_have_columns=sel_map[_sel]["must_have_cols"])
        sql_query_chain = VectorSQLDatabaseChain.from_llm(
            llm=OpenAI(model_name=query_model_name,
                       openai_api_key=OPENAI_API_KEY, temperature=0),
            prompt=PROMPT,
            top_k=10,
            return_direct=True,
            db=SQLDatabase(engine, None, metadata, max_string_length=1024),
            sql_cmd_parser=output_parser,
            native_format=True
        )
        sql_retriever = VectorSQLDatabaseChainRetriever(
            sql_db_chain=sql_query_chain, page_content_key=sel_map[_sel]["text_col"])
    return sql_retriever


def build_qa_chain(_sel: str, retriever: BaseRetriever, name: str = "Self-query") -> ArXivQAwithSourcesChain:
    """_summary_

    :param _sel: selected knowledge base
    :type _sel: str
    :param retriever: retriever used by chains
    :type retriever: BaseRetriever
    :param name: display name, defaults to "Self-query"
    :type name: str, optional
    :return: QA chain interacts with user
    :rtype: ArXivQAwithSourcesChain
    """
    with st.spinner(f'Building QA Chain with {name} for {_sel}...'):
        chain = ArXivQAwithSourcesChain(
            retriever=retriever,
            combine_documents_chain=ArXivStuffDocumentChain(
                llm_chain=LLMChain(
                    prompt=COMBINE_PROMPT,
                    llm=ChatOpenAI(model_name=chat_model_name,
                                   openai_api_key=OPENAI_API_KEY, temperature=0.6),
                ),
                document_prompt=sel_map[_sel]["doc_prompt"],
                document_variable_name="summaries",

            ),
            return_source_documents=True,
            max_tokens_limit=12000,
        )
    return chain


@st.cache_resource
def build_all() -> Tuple[Dict[str, Any], Dict[str, Any]]:
    """build all resources

    :return: sel_map_obj
    :rtype: Dict[str, Any]
    """
    sel_map_obj = {}
    embeddings = {}
    for k in sel_map:
        embeddings[k] = build_embedding_model(k)
        st.session_state[f'emb_model_{k}'] = embeddings[k]
        sel_map_obj[k] = build_chains_retrievers(k)
    return sel_map_obj, embeddings


def create_message_model(table_name, DynamicBase):  # type: ignore
    """
    Create a message model for a given table name.

    Args:
        table_name: The name of the table to use.
        DynamicBase: The base class to use for the model.

    Returns:
        The model class.

    """

    # Model decleared inside a function to have a dynamic table name
    class Message(DynamicBase):
        __tablename__ = table_name
        id = Column(types.Float64)
        session_id = Column(Text)
        user_id = Column(Text)
        msg_id = Column(Text, primary_key=True)
        type = Column(Text)
        addtionals = Column(Text)
        message = Column(Text)
        __table_args__ = (
            engines.ReplacingMergeTree(
                partition_by='session_id',
                order_by=('id', 'msg_id')),
            {'comment': 'Store Chat History'}
        )

    return Message


def _message_from_dict(message: dict) -> BaseMessage:
    _type = message["type"]
    if _type == "human":
        return HumanMessage(**message["data"])
    elif _type == "ai":
        return AIMessage(**message["data"])
    elif _type == "system":
        return SystemMessage(**message["data"])
    elif _type == "chat":
        return ChatMessage(**message["data"])
    elif _type == "function":
        return FunctionMessage(**message["data"])
    elif _type == "tool":
        return ToolMessage(**message["data"])
    elif _type == "AIMessageChunk":
        message["data"]["type"] = "ai"
        return AIMessage(**message["data"])
    else:
        raise ValueError(f"Got unexpected message type: {_type}")


class DefaultClickhouseMessageConverter(DefaultMessageConverter):
    """The default message converter for SQLChatMessageHistory."""

    def __init__(self, table_name: str):
        self.model_class = create_message_model(table_name, declarative_base())

    def to_sql_model(self, message: BaseMessage, session_id: str) -> Any:
        tstamp = time.time()
        msg_id = hashlib.sha256(
            f"{session_id}_{message}_{tstamp}".encode('utf-8')).hexdigest()
        user_id, _ = session_id.split("?")
        return self.model_class(
            id=tstamp,
            msg_id=msg_id,
            user_id=user_id,
            session_id=session_id,
            type=message.type,
            addtionals=json.dumps(message.additional_kwargs),
            message=json.dumps({
                "type": message.type,
                "additional_kwargs": {"timestamp": tstamp},
                "data": message.dict()})
        )

    def from_sql_model(self, sql_message: Any) -> BaseMessage:
        msg_dump = json.loads(sql_message.message)
        msg = _message_from_dict(msg_dump)
        msg.additional_kwargs = msg_dump["additional_kwargs"]
        return msg

    def get_sql_model_class(self) -> Any:
        return self.model_class


def create_agent_executor(name, session_id, llm, tools, system_prompt, **kwargs):
    name = name.replace(" ", "_")
    conn_str = f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}'
    chat_memory = SQLChatMessageHistory(
        session_id,
        connection_string=f'{conn_str}/chat?protocol=https',
        custom_message_converter=DefaultClickhouseMessageConverter(name))
    memory = AgentTokenBufferMemory(llm=llm, chat_memory=chat_memory)

    _system_message = SystemMessage(
        content=system_prompt
    )
    prompt = OpenAIFunctionsAgent.create_prompt(
        system_message=_system_message,
        extra_prompt_messages=[MessagesPlaceholder(variable_name="history")],
    )
    agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
    return AgentExecutor(
        agent=agent,
        tools=tools,
        memory=memory,
        verbose=True,
        return_intermediate_steps=True,
        **kwargs
    )


class RetrieverInput(BaseModel):
    query: str = Field(description="query to look up in retriever")


def create_retriever_tool(
    retriever: BaseRetriever, name: str, description: str
) -> Tool:
    """Create a tool to do retrieval of documents.

    Args:
        retriever: The retriever to use for the retrieval
        name: The name for the tool. This will be passed to the language model,
            so should be unique and somewhat descriptive.
        description: The description for the tool. This will be passed to the language
            model, so should be descriptive.

    Returns:
        Tool class to pass to an agent
    """
    def wrap(func):
        def wrapped_retrieve(*args, **kwargs):
            docs: List[Document] = func(*args, **kwargs)
            return json.dumps([d.dict() for d in docs], cls=CustomJSONEncoder)
        return wrapped_retrieve

    return Tool(
        name=name,
        description=description,
        func=wrap(retriever.get_relevant_documents),
        coroutine=retriever.aget_relevant_documents,
        args_schema=RetrieverInput,
    )


@st.cache_resource
def build_tools():
    """build all resources

    :return: sel_map_obj
    :rtype: Dict[str, Any]
    """
    sel_map_obj = {}
    for k in sel_map:
        if f'emb_model_{k}' not in st.session_state:
            st.session_state[f'emb_model_{k}'] = build_embedding_model(k)
        if "sel_map_obj" not in st.session_state:
            st.session_state["sel_map_obj"] = {}
        if k not in st.session_state.sel_map_obj:
            st.session_state["sel_map_obj"][k] = {}
        if "langchain_retriever" not in st.session_state.sel_map_obj[k] or "vecsql_retriever" not in st.session_state.sel_map_obj[k]:
            st.session_state.sel_map_obj[k].update(build_chains_retrievers(k))
        sel_map_obj.update({
            f"{k} + Self Querying": create_retriever_tool(st.session_state.sel_map_obj[k]["retriever"], *sel_map[k]["tool_desc"],),
            f"{k} + Vector SQL": create_retriever_tool(st.session_state.sel_map_obj[k]["sql_retriever"], *sel_map[k]["tool_desc"],),
        })
    return sel_map_obj


def build_agents(session_id, tool_names, chat_model_name=chat_model_name, temperature=0.6, system_prompt=DEFAULT_SYSTEM_PROMPT):
    chat_llm = ChatOpenAI(model_name=chat_model_name, temperature=temperature,
                          openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY, streaming=True,
                          )
    tools = st.session_state.tools if "tools_with_users" not in st.session_state else st.session_state.tools_with_users
    sel_tools = [tools[k] for k in tool_names]
    agent = create_agent_executor(
        "chat_memory",
        session_id,
        chat_llm,
        tools=sel_tools,
        system_prompt=system_prompt
    )
    return agent


def display(dataframe, columns_=None, index=None):
    if len(dataframe) > 0:
        if index:
            dataframe.set_index(index)
        if columns_:
            st.dataframe(dataframe[columns_])
        else:
            st.dataframe(dataframe)
    else:
        st.write("Sorry 😵 we didn't find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype.", unsafe_allow_html=True)