Spaces:
Running
Running
File size: 4,569 Bytes
e931b70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
from typing import List
import pandas as pd
import streamlit as st
from langchain.schema import Document
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
from backend.chains.retrieval_qa_with_sources import CustomRetrievalQAWithSourcesChain
from backend.constants.myscale_tables import MYSCALE_TABLES
from backend.constants.variables import CHAINS_RETRIEVERS_MAPPING, DIVIDER_HTML, RetrieverButtons
from backend.callbacks.vector_sql_callbacks import VectorSQLSearchDBCallBackHandler, VectorSQLSearchLLMCallBackHandler
from ui.utils import display
from logger import logger
def process_sql_query(selected_table: str, query_type: str):
place_holder = st.empty()
logger.info(
f"button-1: {st.session_state[RetrieverButtons.vector_sql_query_from_db]}, "
f"button-2: {st.session_state[RetrieverButtons.vector_sql_query_with_llm]}, "
f"table: {selected_table}, "
f"content: {st.session_state.query_sql}"
)
with place_holder.expander('πͺ΅ Query Log', expanded=True):
try:
if query_type == RetrieverButtons.vector_sql_query_from_db:
callback = VectorSQLSearchDBCallBackHandler()
vector_sql_retriever: VectorSQLDatabaseChainRetriever = \
st.session_state[CHAINS_RETRIEVERS_MAPPING][selected_table]["sql_retriever"]
relevant_docs: List[Document] = vector_sql_retriever.get_relevant_documents(
query=st.session_state.query_sql,
callbacks=[callback]
)
callback.progress_bar.progress(
value=1.0,
text="[Question -> LLM -> SQL Statement -> MyScaleDB -> Results] Done! β
"
)
st.markdown(f"### Vector Search Results from `{selected_table}` \n"
f"> Here we get documents from MyScaleDB with given sql statement \n\n")
display(
pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in relevant_docs]
)
)
elif query_type == RetrieverButtons.vector_sql_query_with_llm:
callback = VectorSQLSearchLLMCallBackHandler(table=selected_table)
vector_sql_chain: CustomRetrievalQAWithSourcesChain = \
st.session_state[CHAINS_RETRIEVERS_MAPPING][selected_table]["sql_chain"]
chain_results = vector_sql_chain(
inputs=st.session_state.query_sql,
callbacks=[callback]
)
callback.progress_bar.progress(
value=1.0,
text="[Question -> LLM -> SQL Statement -> MyScaleDB -> "
"(Question,Results) -> LLM -> Results] Done! β
"
)
documents_reference: List[Document] = chain_results["source_documents"]
st.markdown(f"### Vector Search Results from `{selected_table}` \n"
f"> Here we get documents from MyScaleDB with given sql statement \n\n")
display(
pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in documents_reference]
)
)
st.markdown(
f"### Answer from LLM \n"
f"> The response of the LLM when given the vector search results. \n\n"
)
st.write(chain_results['answer'])
st.markdown(
f"### References from `{selected_table}`\n"
f"> Here shows that which documents used by LLM \n\n"
)
if len(chain_results['sources']) == 0:
st.write("No documents is used by LLM.")
else:
display(
dataframe=pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in chain_results['sources']]
),
columns_=['ref_id'] + MYSCALE_TABLES[selected_table].must_have_col_names,
index='ref_id'
)
else:
raise NotImplementedError(f"Unsupported query type: {query_type}")
st.markdown(DIVIDER_HTML, unsafe_allow_html=True)
except Exception as e:
st.write('Oops π΅ Something bad happened...')
raise e
|