Spaces:
Running
Running
File size: 13,685 Bytes
a796108 9061790 abcac4c a796108 526644e a796108 eb820e1 9061790 e4853cf 526644e a796108 4a0bec4 eb820e1 a796108 e4853cf a796108 9061790 238d915 9061790 3e40ebd 238d915 9061790 a796108 9061790 a796108 9061790 a796108 526644e a796108 eb820e1 9061790 eb820e1 9061790 eb820e1 9061790 4a0bec4 9061790 526644e eb820e1 9061790 526644e 9061790 eb820e1 9061790 eb820e1 9061790 526644e a796108 9061790 3d0170b 9061790 a796108 9061790 eb820e1 9061790 eb820e1 238d915 9061790 eb820e1 9061790 238d915 9061790 eb820e1 9061790 eb820e1 238d915 9061790 eb820e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import re
import pandas as pd
from os import environ
import streamlit as st
import datetime
environ['TOKENIZERS_PARALLELISM'] = 'true'
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
from langchain.vectorstores import MyScale, MyScaleSettings
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from sqlalchemy import create_engine, MetaData
from langchain.chains import LLMChain
from langchain.utilities.sql_database import SQLDatabase
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser
from chains.arxiv_chains import ArXivQAwithSourcesChain, ArXivStuffDocumentChain
from callbacks.arxiv_callbacks import ChatDataSelfSearchCallBackHandler, \
ChatDataSelfAskCallBackHandler, ChatDataSQLSearchCallBackHandler, \
ChatDataSQLAskCallBackHandler
from prompts.arxiv_prompt import combine_prompt_template, _myscale_prompt
st.set_page_config(page_title="ChatData")
st.header("ChatData")
def try_eval(x):
try:
return eval(x, {'datetime': datetime})
except:
return x
def display(dataframe, columns_=None, index=None):
if len(dataframe) > 0:
if index:
dataframe.set_index(index)
if columns_:
st.dataframe(dataframe[columns_])
else:
st.dataframe(dataframe)
else:
st.write("Sorry 😵 we didn't find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype.", unsafe_allow_html=True)
@st.cache_resource
def build_retriever():
with st.spinner("Loading Model..."):
embeddings = HuggingFaceInstructEmbeddings(
model_name='hkunlp/instructor-xl',
embed_instruction="Represent the question for retrieving supporting scientific papers: ")
with st.spinner("Connecting DB..."):
myscale_connection = {
"host": st.secrets['MYSCALE_HOST'],
"port": st.secrets['MYSCALE_PORT'],
"username": st.secrets['MYSCALE_USER'],
"password": st.secrets['MYSCALE_PASSWORD'],
}
config = MyScaleSettings(**myscale_connection, table='ChatArXiv',
column_map={
"id": "id",
"text": "abstract",
"vector": "vector",
"metadata": "metadata"
})
doc_search = MyScale(embeddings, config)
with st.spinner("Building Self Query Retriever..."):
metadata_field_info = [
AttributeInfo(
name=VirtualColumnName(name="pubdate"),
description="The year the paper is published",
type="timestamp",
),
AttributeInfo(
name="authors",
description="List of author names",
type="list[string]",
),
AttributeInfo(
name="title",
description="Title of the paper",
type="string",
),
AttributeInfo(
name="categories",
description="arxiv categories to this paper",
type="list[string]"
),
AttributeInfo(
name="length(categories)",
description="length of arxiv categories to this paper",
type="int"
),
]
retriever = SelfQueryRetriever.from_llm(
OpenAI(openai_api_key=st.secrets['OPENAI_API_KEY'], temperature=0),
doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
use_original_query=False)
document_with_metadata_prompt = PromptTemplate(
input_variables=["page_content", "id", "title", "ref_id",
"authors", "pubdate", "categories"],
template="Title for PDF #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}")
COMBINE_PROMPT = ChatPromptTemplate.from_strings(
string_messages=[(SystemMessagePromptTemplate, combine_prompt_template),
(HumanMessagePromptTemplate, '{question}')])
OPENAI_API_KEY = st.secrets['OPENAI_API_KEY']
with st.spinner('Building QA Chain with Self-query...'):
chain = ArXivQAwithSourcesChain(
retriever=retriever,
combine_documents_chain=ArXivStuffDocumentChain(
llm_chain=LLMChain(
prompt=COMBINE_PROMPT,
llm=ChatOpenAI(model_name='gpt-3.5-turbo-16k',
openai_api_key=OPENAI_API_KEY, temperature=0.6),
),
document_prompt=document_with_metadata_prompt,
document_variable_name="summaries",
),
return_source_documents=True,
max_tokens_limit=12000,
)
with st.spinner('Building Vector SQL Database Retriever'):
MYSCALE_USER = st.secrets['MYSCALE_USER']
MYSCALE_PASSWORD = st.secrets['MYSCALE_PASSWORD']
MYSCALE_HOST = st.secrets['MYSCALE_HOST']
MYSCALE_PORT = st.secrets['MYSCALE_PORT']
engine = create_engine(
f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/default?protocol=https')
metadata = MetaData(bind=engine)
PROMPT = PromptTemplate(
input_variables=["input", "table_info", "top_k"],
template=_myscale_prompt,
)
output_parser = VectorSQLRetrieveCustomOutputParser.from_embeddings(
model=embeddings)
sql_query_chain = VectorSQLDatabaseChain.from_llm(
llm=OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0),
prompt=PROMPT,
top_k=10,
return_direct=True,
db=SQLDatabase(engine, None, metadata, max_string_length=1024),
sql_cmd_parser=output_parser,
native_format=True
)
sql_retriever = VectorSQLDatabaseChainRetriever(
sql_db_chain=sql_query_chain, page_content_key="abstract")
with st.spinner('Building QA Chain with Vector SQL...'):
sql_chain = ArXivQAwithSourcesChain(
retriever=sql_retriever,
combine_documents_chain=ArXivStuffDocumentChain(
llm_chain=LLMChain(
prompt=COMBINE_PROMPT,
llm=ChatOpenAI(model_name='gpt-3.5-turbo-16k',
openai_api_key=OPENAI_API_KEY, temperature=0.6),
),
document_prompt=document_with_metadata_prompt,
document_variable_name="summaries",
),
return_source_documents=True,
max_tokens_limit=12000,
)
return [{'name': m.name.name if type(m.name) is VirtualColumnName else m.name, 'desc': m.description, 'type': m.type} for m in metadata_field_info], \
retriever, chain, sql_retriever, sql_chain
if 'retriever' not in st.session_state:
st.session_state['metadata_columns'], \
st.session_state['retriever'], \
st.session_state['chain'], \
st.session_state['sql_retriever'], \
st.session_state['sql_chain'] = build_retriever()
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
"For example: \n\n"
"*If you want to search papers with complex filters*:\n\n"
"- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n"
"*If you want to ask questions based on papers in database*:\n\n"
"- What is PageRank?\n"
"- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n"
"- Introduce some applications of GANs published around 2019.\n"
"- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n"
"- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n"
"- Is it possible to synthesize room temperature super conductive material?")
tab_sql, tab_self_query = st.tabs(['Vector SQL', 'Self-Query Retrievers'])
with tab_sql:
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.markdown('''```sql
CREATE TABLE default.ChatArXiv (
`abstract` String,
`id` String,
`vector` Array(Float32),
`metadata` Object('JSON'),
`pubdate` DateTime,
`title` String,
`categories` Array(String),
`authors` Array(String),
`comment` String,
`primary_category` String,
VECTOR INDEX vec_idx vector TYPE MSTG('metric_type=Cosine'),
CONSTRAINT vec_len CHECK length(vector) = 768)
ENGINE = ReplacingMergeTree ORDER BY id
```''')
st.text_input("Ask a question:", key='query_sql')
cols = st.columns([1, 1, 7])
cols[0].button("Query", key='search_sql')
cols[1].button("Ask", key='ask_sql')
plc_hldr = st.empty()
if st.session_state.search_sql:
plc_hldr = st.empty()
print(st.session_state.query_sql)
with plc_hldr.expander('Query Log', expanded=True):
callback = ChatDataSQLSearchCallBackHandler()
try:
docs = st.session_state.sql_retriever.get_relevant_documents(
st.session_state.query_sql, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs)
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
if st.session_state.ask_sql:
plc_hldr = st.empty()
print(st.session_state.query_sql)
with plc_hldr.expander('Chat Log', expanded=True):
callback = ChatDataSQLAskCallBackHandler()
try:
ret = st.session_state.sql_chain(
st.session_state.query_sql, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['sources']
docs = pd.DataFrame([{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, ['ref_id', 'title', 'id', 'categories', 'abstract', 'authors', 'pubdate'], index='ref_id')
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
with tab_self_query:
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
st.dataframe(st.session_state.metadata_columns)
st.text_input("Ask a question:", key='query_self')
cols = st.columns([1, 1, 7])
cols[0].button("Query", key='search_self')
cols[1].button("Ask", key='ask_self')
plc_hldr = st.empty()
if st.session_state.search_self:
plc_hldr = st.empty()
print(st.session_state.query_self)
with plc_hldr.expander('Query Log', expanded=True):
call_back = None
callback = ChatDataSelfSearchCallBackHandler()
try:
docs = st.session_state.retriever.get_relevant_documents(
st.session_state.query_self, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
docs = pd.DataFrame(
[{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate'])
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
if st.session_state.ask_self:
plc_hldr = st.empty()
print(st.session_state.query_self)
with plc_hldr.expander('Chat Log', expanded=True):
call_back = None
callback = ChatDataSelfAskCallBackHandler()
try:
ret = st.session_state.chain(
st.session_state.query_self, callbacks=[callback])
callback.progress_bar.progress(value=1.0, text="Done!")
st.markdown(
f"### Answer from LLM\n{ret['answer']}\n### References")
docs = ret['sources']
docs = pd.DataFrame([{**d.metadata, 'abstract': d.page_content} for d in docs])
display(docs, ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate'], index='ref_id')
except Exception as e:
st.write('Oops 😵 Something bad happened...')
raise e
|