mustapha commited on
Commit
ab83c62
·
1 Parent(s): cd26fcb

Delete ascr.py

Browse files
Files changed (1) hide show
  1. ascr.py +0 -68
ascr.py DELETED
@@ -1,68 +0,0 @@
1
-
2
- # %%
3
- import gradio as gr
4
- import numpy as np
5
- # import random as rn
6
- # import os
7
- import tensorflow as tf
8
- import cv2
9
-
10
- # tf.config.experimental.set_visible_devices([], 'GPU')
11
-
12
-
13
- #%%
14
- def parse_image(image):
15
- image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
16
- image = cv2.resize(image, (100, 100))
17
- image = image.astype(np.float32)
18
- image = image / 255.0
19
- image = np.expand_dims(image, axis=0)
20
- image = np.expand_dims(image, axis=-1)
21
- return image
22
-
23
- #%%
24
-
25
- def cnn(input_shape, output_shape):
26
- num_classes = output_shape[0]
27
- dropout_seed = 708090
28
- kernel_seed = 42
29
-
30
- model = tf.keras.models.Sequential([
31
- tf.keras.layers.Conv2D(16, 3, activation='relu', input_shape=input_shape, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
32
- tf.keras.layers.MaxPooling2D(),
33
- tf.keras.layers.Dropout(0.1, seed=dropout_seed),
34
- tf.keras.layers.Conv2D(32, 5, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
35
- tf.keras.layers.MaxPooling2D(),
36
- tf.keras.layers.Dropout(0.1, seed=dropout_seed),
37
- tf.keras.layers.Conv2D(64, 10, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
38
- tf.keras.layers.MaxPooling2D(),
39
- tf.keras.layers.Dropout(0.1, seed=dropout_seed),
40
- tf.keras.layers.Flatten(),
41
- tf.keras.layers.Dense(128, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
42
- tf.keras.layers.Dropout(0.2, seed=dropout_seed),
43
- tf.keras.layers.Dense(16, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
44
- tf.keras.layers.Dropout(0.2, seed=dropout_seed),
45
- tf.keras.layers.Dense(num_classes, activation='sigmoid', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed))
46
- ])
47
-
48
- return model
49
-
50
- #%%
51
- model = cnn((100, 100, 1), (1,))
52
- model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), optimizer='Adam', metrics='accuracy')
53
-
54
- model.load_weights('weights.h5')
55
-
56
- #%%
57
- def segment(image):
58
- image = parse_image(image)
59
- # print(image.shape)
60
- output = model.predict(image)
61
- # print(output)
62
- labels = {
63
- "farsi" : 1-float(output),
64
- "ruqaa" : float(output)
65
- }
66
- return labels
67
-
68
- iface = gr.Interface(fn=segment, inputs="image", outputs="label").launch()