mustapha commited on
Commit
1414003
·
1 Parent(s): fd6b636

adding examples

Browse files
.gitattributes CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ weights.h5 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,13 +1,5 @@
1
- ---
2
- title: ACSR
3
- emoji: 📊
4
- colorFrom: red
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 2.9.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
1
+ The weights of the model aren't here, download them first and put them in the same directory as `acsr.py`
2
+
3
+ ```bash
4
+ $ wget 'https://raw.githubusercontent.com/mhmoodlan/arabic-font-classification/master/codebase/code/font_classifier/weights/FontModel_RuFaDataset_cnn_weights(4).h5' -O weights.h5
5
+ ```
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,68 +1,77 @@
1
-
2
- # %%
3
- import gradio as gr
4
- import numpy as np
5
- # import random as rn
6
- # import os
7
- import tensorflow as tf
8
- import cv2
9
-
10
- # tf.config.experimental.set_visible_devices([], 'GPU')
11
-
12
-
13
- #%%
14
- def parse_image(image):
15
- image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
16
- image = cv2.resize(image, (100, 100))
17
- image = image.astype(np.float32)
18
- image = image / 255.0
19
- image = np.expand_dims(image, axis=0)
20
- image = np.expand_dims(image, axis=-1)
21
- return image
22
-
23
- #%%
24
-
25
- def cnn(input_shape, output_shape):
26
- num_classes = output_shape[0]
27
- dropout_seed = 708090
28
- kernel_seed = 42
29
-
30
- model = tf.keras.models.Sequential([
31
- tf.keras.layers.Conv2D(16, 3, activation='relu', input_shape=input_shape, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
32
- tf.keras.layers.MaxPooling2D(),
33
- tf.keras.layers.Dropout(0.1, seed=dropout_seed),
34
- tf.keras.layers.Conv2D(32, 5, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
35
- tf.keras.layers.MaxPooling2D(),
36
- tf.keras.layers.Dropout(0.1, seed=dropout_seed),
37
- tf.keras.layers.Conv2D(64, 10, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
38
- tf.keras.layers.MaxPooling2D(),
39
- tf.keras.layers.Dropout(0.1, seed=dropout_seed),
40
- tf.keras.layers.Flatten(),
41
- tf.keras.layers.Dense(128, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
42
- tf.keras.layers.Dropout(0.2, seed=dropout_seed),
43
- tf.keras.layers.Dense(16, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
44
- tf.keras.layers.Dropout(0.2, seed=dropout_seed),
45
- tf.keras.layers.Dense(num_classes, activation='sigmoid', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed))
46
- ])
47
-
48
- return model
49
-
50
- #%%
51
- model = cnn((100, 100, 1), (1,))
52
- model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), optimizer='Adam', metrics='accuracy')
53
-
54
- model.load_weights('weights.h5')
55
-
56
- #%%
57
- def segment(image):
58
- image = parse_image(image)
59
- # print(image.shape)
60
- output = model.predict(image)
61
- # print(output)
62
- labels = {
63
- "farsi" : 1-float(output),
64
- "ruqaa" : float(output)
65
- }
66
- return labels
67
-
68
- iface = gr.Interface(fn=segment, inputs="image", outputs="label").launch()
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # %%
3
+ import gradio as gr
4
+ import numpy as np
5
+ # import random as rn
6
+ # import os
7
+ import tensorflow as tf
8
+ import cv2
9
+
10
+ tf.config.experimental.set_visible_devices([], 'GPU')
11
+
12
+
13
+ #%%
14
+ def parse_image(image):
15
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
16
+ image = cv2.resize(image, (100, 100))
17
+ image = image.astype(np.float32)
18
+ image = image / 255.0
19
+ image = np.expand_dims(image, axis=0)
20
+ image = np.expand_dims(image, axis=-1)
21
+ return image
22
+
23
+ #%%
24
+
25
+ def cnn(input_shape, output_shape):
26
+ num_classes = output_shape[0]
27
+ dropout_seed = 708090
28
+ kernel_seed = 42
29
+
30
+ model = tf.keras.models.Sequential([
31
+ tf.keras.layers.Conv2D(16, 3, activation='relu', input_shape=input_shape, kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
32
+ tf.keras.layers.MaxPooling2D(),
33
+ tf.keras.layers.Dropout(0.1, seed=dropout_seed),
34
+ tf.keras.layers.Conv2D(32, 5, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
35
+ tf.keras.layers.MaxPooling2D(),
36
+ tf.keras.layers.Dropout(0.1, seed=dropout_seed),
37
+ tf.keras.layers.Conv2D(64, 10, activation='relu', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
38
+ tf.keras.layers.MaxPooling2D(),
39
+ tf.keras.layers.Dropout(0.1, seed=dropout_seed),
40
+ tf.keras.layers.Flatten(),
41
+ tf.keras.layers.Dense(128, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
42
+ tf.keras.layers.Dropout(0.2, seed=dropout_seed),
43
+ tf.keras.layers.Dense(16, activation='relu', kernel_regularizer='l2', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed)),
44
+ tf.keras.layers.Dropout(0.2, seed=dropout_seed),
45
+ tf.keras.layers.Dense(num_classes, activation='sigmoid', kernel_initializer=tf.keras.initializers.GlorotUniform(seed=kernel_seed))
46
+ ])
47
+
48
+ return model
49
+
50
+ #%%
51
+ model = cnn((100, 100, 1), (1,))
52
+ model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), optimizer='Adam', metrics='accuracy')
53
+
54
+ model.load_weights('weights.h5')
55
+
56
+ #%%
57
+ def segment(image):
58
+ image = parse_image(image)
59
+ # print(image.shape)
60
+ output = model.predict(image)
61
+ # print(output)
62
+ labels = {
63
+ "farsi" : 1-float(output),
64
+ "ruqaa" : float(output)
65
+ }
66
+ return labels
67
+
68
+ iface = gr.Interface(fn=segment,
69
+ inputs="image",
70
+ outputs="label",
71
+ examples=[["images/Farsi_1.jpg"],
72
+ ["images/Farsi_2.jpg"],
73
+ ["images/Ruqaa_1.jpg"],
74
+ ["images/Ruqaa_2.jpg"],
75
+ ["images/Ruqaa_3.jpg"],
76
+ ]).launch()
77
+ # %%
images/Farsi_1.jpg ADDED
images/Farsi_2.jpg ADDED
images/Ruqaa_1.jpg ADDED
images/Ruqaa_2.jpg ADDED
images/Ruqaa_3.jpg ADDED