Video_Analyser_V2 / utils.py
mustafoyev202's picture
Upload 2 files
ee9d6a2 verified
from moviepy.editor import VideoFileClip, concatenate_videoclips
from pydub import AudioSegment
import numpy as np
import torch
from silero_vad import load_silero_vad, get_speech_timestamps
import os
import json
from google import genai
import pandas as pd
import re
import time
from dotenv import load_dotenv
torch.set_num_threads(1)
load_dotenv()
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
def set_torch_threads(safe_ratio=0.5):
try:
total_cores = os.cpu_count()
optimal_threads = max(1, int(total_cores * safe_ratio))
torch.set_num_threads(optimal_threads)
print(f"Set torch threads to: {optimal_threads} (out of {total_cores} cores)")
except Exception as e:
print(f"Failed to set torch threads dynamically: {e}")
torch.set_num_threads(1)
def analyze_single_video(video_path):
"""Analyzes a single video for emotions using the GenAI model."""
prompt = """
Detect emotion from this video and classify into 3 categories: happy, sad, normal. Return only JSON format without any extra text.
Return this JSON schema:
{
"Vocal": {
"sad_score": (%),
"happy_score": (%),
"normal_score": (%),
"sad_reason": (list of timestamps),
"happy_reason": (list of timestamps),
"normal_reason": (list of timestamps)
},
"Verbal": {
"sad_score": (%),
"happy_score": (%),
"normal_score": (%),
"sad_reason": (list of timestamps),
"happy_reason": (list of timestamps),
"normal_reason": (list of timestamps)
},
"Vision": {
"sad_score": (%),
"happy_score": (%),
"normal_score": (%),
"sad_reason": (list of timestamps),
"happy_reason": (list of timestamps),
"normal_reason": (list of timestamps)
}
}
Reasons (sad_reason, happy_reason, normal_reason) should be a list of beginning-ending timestamps. For example: ['0:11-0:14', '0:23-0:25', '0:27-0:29']
"""
try:
with open(video_path, 'rb') as video_file:
video_bytes = video_file.read()
print(f"Processing: {video_path}")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[{"text": prompt}, {"inline_data": {"data": video_bytes, "mime_type": "video/mp4"}}],
config={"http_options": {"timeout": 60000}}
)
# Extract token usage information
input_token = response.usage_metadata.prompt_token_count
output_token = response.usage_metadata.candidates_token_count
total_token = response.usage_metadata.total_token_count
response_text = response.text.strip()
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', response_text)
json_string = json_match.group(1).strip() if json_match else response_text
result = json.loads(json_string)
return (video_path, result, input_token, output_token, total_token)
except Exception as e:
print(f"Error processing {video_path}: {e}")
return (video_path, None, 0, 0, 0)
def wrapper_with_delay(video_path):
time.sleep(2) # Add delay to avoid throttling
return analyze_single_video(video_path)
def process_multiple_videos_from_results(results):
"""Processes results directly without re-analyzing."""
records = []
for video_path, result, _, _, _ in results:
if result is None:
continue
video_title = os.path.basename(video_path)
for category in ['Verbal', 'Vocal', 'Vision']:
for emotion in ['normal', 'happy', 'sad']:
score = result[category].get(f"{emotion}_score", 0)
reasons = result[category].get(f"{emotion}_reason", [])
records.append({
'title': video_title,
'category': category,
'emotion': emotion,
'score': score,
'reasons': json.dumps(reasons)
})
df = pd.DataFrame(records)
return df
def getting_video_length(vid):
clip = VideoFileClip(vid)
duration = clip.duration
return np.round(duration, decimals=2)
def get_speech_only_video_duration(video_path: str, sampling_rate: int = 16000, use_onnx: bool = False) -> float:
# Load VAD model
model = load_silero_vad(onnx=use_onnx)
# Extract audio from video using pydub
audio = AudioSegment.from_file(video_path).set_frame_rate(sampling_rate).set_channels(1)
samples = np.array(audio.get_array_of_samples()).astype("float32") / (2**15)
audio_tensor = torch.from_numpy(samples)
# Get speech timestamps
speech_timestamps = get_speech_timestamps(audio_tensor, model, sampling_rate=sampling_rate)
# Convert sample indices to seconds
for ts in speech_timestamps:
ts['start'] /= sampling_rate
ts['end'] /= sampling_rate
if not speech_timestamps:
return 0.0 # No speech detected
# Load video
video = VideoFileClip(video_path)
# Extract speech-only clips
clips = [video.subclip(ts['start'], ts['end']) for ts in speech_timestamps]
# Concatenate and return duration
final_video = concatenate_videoclips(clips)
return final_video.duration
def getting_usage_info_from_results(video_paths, results):
"""Use pre-fetched results to avoid double processing."""
filenames = np.vectorize(os.path.basename)(video_paths).reshape(-1, 1)
durations = np.vectorize(getting_video_length)(video_paths).reshape(-1, 1)
speech_durations = np.vectorize(get_speech_only_video_duration)(video_paths).reshape(-1, 1)
token_data = np.array([[r[2], r[3], r[4]] for r in results if r[1] is not None])
if token_data.size == 0:
token_data = np.zeros((len(video_paths), 3))
token_data = token_data.astype(float)
X = 1_000_000
input_token_price = np.round(token_data[:, 0] * 0.10 / X, decimals=4).reshape(-1, 1)
output_token_price = np.round(token_data[:, 1] * 0.40 / X, decimals=4).reshape(-1, 1)
total_token_price = input_token_price + output_token_price
final_arr = np.concatenate(
(filenames, durations, speech_durations, token_data, input_token_price, output_token_price, total_token_price),
axis=1
)
df = pd.DataFrame(
final_arr,
columns=[
'title', 'total_duration(s)', 'speech_duration(s)', 'input_token', 'output_token', 'total_token',
'input_price($)', 'output_price($)', 'total_price($)'
]
)
return df