Spaces:
Running
Running
from moviepy.editor import VideoFileClip, concatenate_videoclips | |
from pydub import AudioSegment | |
import numpy as np | |
import torch | |
from silero_vad import load_silero_vad, get_speech_timestamps | |
import os | |
import json | |
from google import genai | |
import pandas as pd | |
import re | |
import time | |
from dotenv import load_dotenv | |
torch.set_num_threads(1) | |
load_dotenv() | |
client = genai.Client(api_key=os.getenv("GOOGLE_API_KEY")) | |
def set_torch_threads(safe_ratio=0.5): | |
try: | |
total_cores = os.cpu_count() | |
optimal_threads = max(1, int(total_cores * safe_ratio)) | |
torch.set_num_threads(optimal_threads) | |
print(f"Set torch threads to: {optimal_threads} (out of {total_cores} cores)") | |
except Exception as e: | |
print(f"Failed to set torch threads dynamically: {e}") | |
torch.set_num_threads(1) | |
def analyze_single_video(video_path): | |
"""Analyzes a single video for emotions using the GenAI model.""" | |
prompt = """ | |
Detect emotion from this video and classify into 3 categories: happy, sad, normal. Return only JSON format without any extra text. | |
Return this JSON schema: | |
{ | |
"Vocal": { | |
"sad_score": (%), | |
"happy_score": (%), | |
"normal_score": (%), | |
"sad_reason": (list of timestamps), | |
"happy_reason": (list of timestamps), | |
"normal_reason": (list of timestamps) | |
}, | |
"Verbal": { | |
"sad_score": (%), | |
"happy_score": (%), | |
"normal_score": (%), | |
"sad_reason": (list of timestamps), | |
"happy_reason": (list of timestamps), | |
"normal_reason": (list of timestamps) | |
}, | |
"Vision": { | |
"sad_score": (%), | |
"happy_score": (%), | |
"normal_score": (%), | |
"sad_reason": (list of timestamps), | |
"happy_reason": (list of timestamps), | |
"normal_reason": (list of timestamps) | |
} | |
} | |
Reasons (sad_reason, happy_reason, normal_reason) should be a list of beginning-ending timestamps. For example: ['0:11-0:14', '0:23-0:25', '0:27-0:29'] | |
""" | |
try: | |
with open(video_path, 'rb') as video_file: | |
video_bytes = video_file.read() | |
print(f"Processing: {video_path}") | |
response = client.models.generate_content( | |
model="gemini-2.0-flash", | |
contents=[{"text": prompt}, {"inline_data": {"data": video_bytes, "mime_type": "video/mp4"}}], | |
config={"http_options": {"timeout": 60000}} | |
) | |
# Extract token usage information | |
input_token = response.usage_metadata.prompt_token_count | |
output_token = response.usage_metadata.candidates_token_count | |
total_token = response.usage_metadata.total_token_count | |
response_text = response.text.strip() | |
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', response_text) | |
json_string = json_match.group(1).strip() if json_match else response_text | |
result = json.loads(json_string) | |
return (video_path, result, input_token, output_token, total_token) | |
except Exception as e: | |
print(f"Error processing {video_path}: {e}") | |
return (video_path, None, 0, 0, 0) | |
def wrapper_with_delay(video_path): | |
time.sleep(2) # Add delay to avoid throttling | |
return analyze_single_video(video_path) | |
def process_multiple_videos_from_results(results): | |
"""Processes results directly without re-analyzing.""" | |
records = [] | |
for video_path, result, _, _, _ in results: | |
if result is None: | |
continue | |
video_title = os.path.basename(video_path) | |
for category in ['Verbal', 'Vocal', 'Vision']: | |
for emotion in ['normal', 'happy', 'sad']: | |
score = result[category].get(f"{emotion}_score", 0) | |
reasons = result[category].get(f"{emotion}_reason", []) | |
records.append({ | |
'title': video_title, | |
'category': category, | |
'emotion': emotion, | |
'score': score, | |
'reasons': json.dumps(reasons) | |
}) | |
df = pd.DataFrame(records) | |
return df | |
def getting_video_length(vid): | |
clip = VideoFileClip(vid) | |
duration = clip.duration | |
return np.round(duration, decimals=2) | |
def get_speech_only_video_duration(video_path: str, sampling_rate: int = 16000, use_onnx: bool = False) -> float: | |
# Load VAD model | |
model = load_silero_vad(onnx=use_onnx) | |
# Extract audio from video using pydub | |
audio = AudioSegment.from_file(video_path).set_frame_rate(sampling_rate).set_channels(1) | |
samples = np.array(audio.get_array_of_samples()).astype("float32") / (2**15) | |
audio_tensor = torch.from_numpy(samples) | |
# Get speech timestamps | |
speech_timestamps = get_speech_timestamps(audio_tensor, model, sampling_rate=sampling_rate) | |
# Convert sample indices to seconds | |
for ts in speech_timestamps: | |
ts['start'] /= sampling_rate | |
ts['end'] /= sampling_rate | |
if not speech_timestamps: | |
return 0.0 # No speech detected | |
# Load video | |
video = VideoFileClip(video_path) | |
# Extract speech-only clips | |
clips = [video.subclip(ts['start'], ts['end']) for ts in speech_timestamps] | |
# Concatenate and return duration | |
final_video = concatenate_videoclips(clips) | |
return final_video.duration | |
def getting_usage_info_from_results(video_paths, results): | |
"""Use pre-fetched results to avoid double processing.""" | |
filenames = np.vectorize(os.path.basename)(video_paths).reshape(-1, 1) | |
durations = np.vectorize(getting_video_length)(video_paths).reshape(-1, 1) | |
speech_durations = np.vectorize(get_speech_only_video_duration)(video_paths).reshape(-1, 1) | |
token_data = np.array([[r[2], r[3], r[4]] for r in results if r[1] is not None]) | |
if token_data.size == 0: | |
token_data = np.zeros((len(video_paths), 3)) | |
token_data = token_data.astype(float) | |
X = 1_000_000 | |
input_token_price = np.round(token_data[:, 0] * 0.10 / X, decimals=4).reshape(-1, 1) | |
output_token_price = np.round(token_data[:, 1] * 0.40 / X, decimals=4).reshape(-1, 1) | |
total_token_price = input_token_price + output_token_price | |
final_arr = np.concatenate( | |
(filenames, durations, speech_durations, token_data, input_token_price, output_token_price, total_token_price), | |
axis=1 | |
) | |
df = pd.DataFrame( | |
final_arr, | |
columns=[ | |
'title', 'total_duration(s)', 'speech_duration(s)', 'input_token', 'output_token', 'total_token', | |
'input_price($)', 'output_price($)', 'total_price($)' | |
] | |
) | |
return df |