Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,108 @@
|
|
1 |
-
# Remove unnecessary OpenCV imports and conversions
|
2 |
import gradio as gr
|
3 |
from ultralyticsplus import YOLO, render_result
|
4 |
import numpy as np
|
5 |
import time
|
6 |
import torch
|
7 |
|
8 |
-
# System
|
9 |
print("\n" + "="*40)
|
10 |
print(f"PyTorch: {torch.__version__}")
|
11 |
-
print(f"CUDA: {torch.cuda.is_available()}")
|
12 |
print("="*40 + "\n")
|
13 |
|
14 |
-
# Load model
|
15 |
model = YOLO('foduucom/plant-leaf-detection-and-classification')
|
|
|
|
|
16 |
model.overrides.update({
|
17 |
-
'conf': 0.
|
18 |
-
'iou': 0.
|
19 |
-
'imgsz':
|
|
|
|
|
20 |
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
|
|
|
21 |
'half': torch.cuda.is_available()
|
22 |
})
|
23 |
|
24 |
-
def
|
25 |
try:
|
26 |
start_time = time.time()
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
results = model.predict(
|
30 |
-
source=
|
|
|
31 |
verbose=False,
|
32 |
-
|
|
|
33 |
)
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
print(f"Processing time: {time.time()-start_time:.2f}s")
|
39 |
-
return
|
40 |
|
41 |
except Exception as e:
|
42 |
print(f"Error: {str(e)}")
|
43 |
-
return
|
44 |
|
45 |
-
#
|
46 |
interface = gr.Interface(
|
47 |
-
fn=
|
48 |
-
inputs=gr.Image(),
|
49 |
-
outputs=[
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
-
interface.launch(
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from ultralyticsplus import YOLO, render_result
|
3 |
import numpy as np
|
4 |
import time
|
5 |
import torch
|
6 |
|
7 |
+
# System Configuration
|
8 |
print("\n" + "="*40)
|
9 |
print(f"PyTorch: {torch.__version__}")
|
10 |
+
print(f"CUDA Available: {torch.cuda.is_available()}")
|
11 |
print("="*40 + "\n")
|
12 |
|
13 |
+
# Load model with optimized parameters for leaf counting
|
14 |
model = YOLO('foduucom/plant-leaf-detection-and-classification')
|
15 |
+
|
16 |
+
# Custom configuration for leaf counting
|
17 |
model.overrides.update({
|
18 |
+
'conf': 0.15, # Lower confidence threshold for better recall
|
19 |
+
'iou': 0.25, # Lower IoU threshold for overlapping leaves
|
20 |
+
'imgsz': 1280, # Higher resolution for small leaves
|
21 |
+
'agnostic_nms': False,
|
22 |
+
'max_det': 300, # Higher maximum detections
|
23 |
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
|
24 |
+
'classes': None, # Detect all classes (leaves only in this model)
|
25 |
'half': torch.cuda.is_available()
|
26 |
})
|
27 |
|
28 |
+
def count_leaves(image):
|
29 |
try:
|
30 |
start_time = time.time()
|
31 |
|
32 |
+
# Preprocessing - enhance contrast
|
33 |
+
image = np.array(image)
|
34 |
+
lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
|
35 |
+
l, a, b = cv2.split(lab)
|
36 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
37 |
+
cl = clahe.apply(l)
|
38 |
+
limg = cv2.merge((cl,a,b))
|
39 |
+
enhanced_img = cv2.cvtColor(limg, cv2.COLOR_LAB2RGB)
|
40 |
+
|
41 |
+
# Prediction with overlap handling
|
42 |
results = model.predict(
|
43 |
+
source=enhanced_img,
|
44 |
+
augment=True, # Test time augmentation
|
45 |
verbose=False,
|
46 |
+
agnostic_nms=False,
|
47 |
+
overlap_mask=False
|
48 |
)
|
49 |
|
50 |
+
# Post-processing for overlapping leaves
|
51 |
+
boxes = results[0].boxes
|
52 |
+
valid_boxes = []
|
53 |
+
|
54 |
+
# Filter small detections and merge overlapping
|
55 |
+
for box in boxes:
|
56 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
57 |
+
w = x2 - x1
|
58 |
+
h = y2 - y1
|
59 |
+
|
60 |
+
# Filter too small boxes (adjust based on your leaf sizes)
|
61 |
+
if w > 20 and h > 20:
|
62 |
+
valid_boxes.append(box)
|
63 |
+
|
64 |
+
# Improved NMS for overlapping leaves
|
65 |
+
from utils.nms import non_max_suppression
|
66 |
+
final_boxes = non_max_suppression(
|
67 |
+
torch.stack([b.xywh[0] for b in valid_boxes]),
|
68 |
+
conf_thres=0.1,
|
69 |
+
iou_thres=0.15,
|
70 |
+
multi_label=False
|
71 |
+
)
|
72 |
+
|
73 |
+
num_leaves = len(final_boxes)
|
74 |
+
|
75 |
+
# Visual validation
|
76 |
+
debug_img = enhanced_img.copy()
|
77 |
+
for box in final_boxes:
|
78 |
+
x1, y1, x2, y2 = map(int, box[:4])
|
79 |
+
cv2.rectangle(debug_img, (x1, y1), (x2, y2), (0,255,0), 2)
|
80 |
|
81 |
print(f"Processing time: {time.time()-start_time:.2f}s")
|
82 |
+
return debug_img, num_leaves
|
83 |
|
84 |
except Exception as e:
|
85 |
print(f"Error: {str(e)}")
|
86 |
+
return image, 0
|
87 |
|
88 |
+
# Gradio interface with visualization
|
89 |
interface = gr.Interface(
|
90 |
+
fn=count_leaves,
|
91 |
+
inputs=gr.Image(label="Input Image"),
|
92 |
+
outputs=[
|
93 |
+
gr.Image(label="Detection Visualization"),
|
94 |
+
gr.Number(label="Estimated Leaf Count")
|
95 |
+
],
|
96 |
+
title="π Advanced Leaf Counter",
|
97 |
+
description="Specialized for overlapping leaves and dense foliage",
|
98 |
+
examples=[
|
99 |
+
["sample_leaf1.jpg"],
|
100 |
+
["sample_leaf2.jpg"]
|
101 |
+
]
|
102 |
)
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
+
interface.launch(
|
106 |
+
server_port=7860,
|
107 |
+
share=False
|
108 |
+
)
|