srinivas-mushroom commited on
Commit
b7982f9
·
1 Parent(s): 1826325

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ from sklearn.feature_extraction.text import CountVectorizer
5
+ from sklearn.naive_bayes import MultinomialNB
6
+
7
+ # Load the symptom-disease dataset
8
+ df = pd.read_csv("Symptom-severity.csv")
9
+
10
+ # Create a bag-of-words representation of the symptoms
11
+ vectorizer = CountVectorizer()
12
+ X = vectorizer.fit_transform(df["Symptom"].values.astype("U"))
13
+ y = df["Disease"]
14
+
15
+ # Train a Naive Bayes classifier on the symptom-disease dataset
16
+ clf = MultinomialNB()
17
+ clf.fit(X, y)
18
+
19
+ # Define the chatbot function
20
+ def diagnose_disease(symptoms):
21
+ # Convert input symptoms to bag-of-words representation
22
+ X_new = vectorizer.transform([symptoms])
23
+
24
+ # Predict the disease using the trained classifier
25
+ disease = clf.predict(X_new)[0]
26
+
27
+ # Get the description of the predicted disease
28
+ description = df[df["Disease"] == disease]["Description"].values[0]
29
+
30
+ return f"The most likely disease based on the symptoms entered is {disease}. {description}"
31
+
32
+ # Define the input and output interfaces
33
+ input_text = gr.inputs.Textbox(label="Enter your symptoms separated by commas")
34
+ output_text = gr.outputs.Textbox()
35
+
36
+ # Create the Gradio interface
37
+ gr.Interface(fn=diagnose_disease, inputs=input_text, outputs=output_text,
38
+ title="Symptom-based Disease Diagnosis Chatbot",
39
+ description="Enter your symptoms separated by commas, and the chatbot will predict the most likely disease.").launch()