muryshev commited on
Commit
b1c7718
1 Parent(s): 9171f49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -74
app.py CHANGED
@@ -1,91 +1,70 @@
1
  # #refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
2
  # #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main
3
- # import gradio as gr
4
- # from openai import OpenAI
5
  import os
6
 
7
  ACCESS_TOKEN = os.getenv("HF_TOKEN")
8
 
9
- # client = OpenAI(
10
- # base_url="https://integrate.api.nvidia.com/v1",
11
- # api_key=ACCESS_TOKEN,
12
- # )
13
 
14
- # def respond(
15
- # message,
16
- # history: list[tuple[str, str]],
17
- # system_message,
18
- # max_tokens,
19
- # temperature,
20
- # top_p,
21
- # ):
22
- # messages = [{"role": "system", "content": system_message}]
23
 
24
- # for val in history:
25
- # if val[0]:
26
- # messages.append({"role": "user", "content": val[0]})
27
- # if val[1]:
28
- # messages.append({"role": "assistant", "content": val[1]})
29
 
30
- # messages.append({"role": "user", "content": message})
31
 
32
- # response = ""
33
 
34
- # for message in client.chat.completions.create(
35
- # model="nvidia/llama-3.1-nemotron-70b-instruct",
36
- # max_tokens=max_tokens,
37
- # stream=True,
38
- # temperature=temperature,
39
- # top_p=top_p,
40
- # messages=messages,
41
- # ):
42
- # token = message.choices[0].delta.content
43
 
44
- # response += token
45
- # yield response
46
 
47
- # chatbot = gr.Chatbot(height=600)
48
 
49
- # service = gr.ChatInterface(
50
- # respond,
51
- # additional_inputs=[
52
- # gr.Textbox(value="", label="Системный промпт"),
53
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальная длина ответа"),
54
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Температура"),
55
- # gr.Slider(
56
- # minimum=0.1,
57
- # maximum=1.0,
58
- # value=0.95,
59
- # step=0.05,
60
- # label="top_p",
61
- # ),
62
 
63
- # ],
64
- # fill_height=True,
65
- # chatbot=chatbot,
66
- # theme=gr.themes.Soft(),
67
- # )
68
- # if __name__ == "__main__":
69
- # service.launch()
70
-
71
-
72
- from openai import OpenAI
73
-
74
- client = OpenAI(
75
- base_url = "https://integrate.api.nvidia.com/v1",
76
- api_key = ACCESS_TOKEN
77
  )
78
-
79
- completion = client.chat.completions.create(
80
- model="nvidia/llama-3.1-nemotron-70b-instruct",
81
- messages=[{"role":"user","content":"Write a limerick about the wonders of GPU computing."}],
82
- temperature=0.5,
83
- top_p=1,
84
- max_tokens=1024,
85
- stream=True
86
- )
87
-
88
- for chunk in completion:
89
- if chunk.choices[0].delta.content is not None:
90
- print(chunk.choices[0].delta.content, end="")
91
 
 
1
  # #refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
2
  # #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main
3
+ import gradio as gr
4
+ from openai import OpenAI
5
  import os
6
 
7
  ACCESS_TOKEN = os.getenv("HF_TOKEN")
8
 
9
+ client = OpenAI(
10
+ base_url="https://integrate.api.nvidia.com/v1",
11
+ api_key=ACCESS_TOKEN,
12
+ )
13
 
14
+ def respond(
15
+ message,
16
+ history: list[tuple[str, str]],
17
+ system_message,
18
+ max_tokens,
19
+ temperature,
20
+ top_p,
21
+ ):
22
+ messages = [{"role": "system", "content": system_message}]
23
 
24
+ for val in history:
25
+ if val[0]:
26
+ messages.append({"role": "user", "content": val[0]})
27
+ if val[1]:
28
+ messages.append({"role": "assistant", "content": val[1]})
29
 
30
+ messages.append({"role": "user", "content": message})
31
 
32
+ response = ""
33
 
34
+ for message in client.chat.completions.create(
35
+ model="nvidia/llama-3.1-nemotron-70b-instruct",
36
+ max_tokens=max_tokens,
37
+ stream=True,
38
+ temperature=temperature,
39
+ top_p=top_p,
40
+ messages=messages,
41
+ ):
42
+ token = message.choices[0].delta.content
43
 
44
+ response += token
45
+ yield response
46
 
47
+ chatbot = gr.Chatbot(height=600)
48
 
49
+ service = gr.ChatInterface(
50
+ respond,
51
+ additional_inputs=[
52
+ gr.Textbox(value="", label="Системный промпт"),
53
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальная длина ответа"),
54
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Температура"),
55
+ gr.Slider(
56
+ minimum=0.1,
57
+ maximum=1.0,
58
+ value=0.95,
59
+ step=0.05,
60
+ label="top_p",
61
+ ),
62
 
63
+ ],
64
+ fill_height=True,
65
+ chatbot=chatbot,
66
+ theme=gr.themes.Soft(),
 
 
 
 
 
 
 
 
 
 
67
  )
68
+ if __name__ == "__main__":
69
+ service.launch()
 
 
 
 
 
 
 
 
 
 
 
70