Spaces:
Sleeping
Sleeping
muneebable
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,102 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
#import spaces #[uncomment to use ZeroGPU]
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
torch_dtype = torch.float32
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
-
seed = random.randint(0,
|
27 |
-
|
28 |
-
generator = torch.Generator().manual_seed(seed)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
height = height,
|
37 |
-
generator = generator
|
38 |
-
).images[0]
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
}
|
53 |
-
"""
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
with gr.
|
58 |
-
gr.
|
59 |
-
|
60 |
-
""
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
label="Prompt",
|
66 |
-
show_label=False,
|
67 |
-
max_lines=1,
|
68 |
-
placeholder="Enter your prompt",
|
69 |
-
container=False,
|
70 |
-
)
|
71 |
-
|
72 |
-
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
-
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
label="Negative prompt",
|
80 |
-
max_lines=1,
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
)
|
84 |
-
|
85 |
-
seed = gr.Slider(
|
86 |
-
label="Seed",
|
87 |
-
minimum=0,
|
88 |
-
maximum=MAX_SEED,
|
89 |
-
step=1,
|
90 |
-
value=0,
|
91 |
-
)
|
92 |
-
|
93 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
-
|
95 |
-
with gr.Row():
|
96 |
-
|
97 |
-
width = gr.Slider(
|
98 |
-
label="Width",
|
99 |
-
minimum=256,
|
100 |
-
maximum=MAX_IMAGE_SIZE,
|
101 |
-
step=32,
|
102 |
-
value=1024, #Replace with defaults that work for your model
|
103 |
-
)
|
104 |
-
|
105 |
-
height = gr.Slider(
|
106 |
-
label="Height",
|
107 |
-
minimum=256,
|
108 |
-
maximum=MAX_IMAGE_SIZE,
|
109 |
-
step=32,
|
110 |
-
value=1024, #Replace with defaults that work for your model
|
111 |
-
)
|
112 |
-
|
113 |
-
with gr.Row():
|
114 |
-
|
115 |
-
guidance_scale = gr.Slider(
|
116 |
-
label="Guidance scale",
|
117 |
-
minimum=0.0,
|
118 |
-
maximum=10.0,
|
119 |
-
step=0.1,
|
120 |
-
value=0.0, #Replace with defaults that work for your model
|
121 |
-
)
|
122 |
-
|
123 |
-
num_inference_steps = gr.Slider(
|
124 |
-
label="Number of inference steps",
|
125 |
-
minimum=1,
|
126 |
-
maximum=50,
|
127 |
-
step=1,
|
128 |
-
value=2, #Replace with defaults that work for your model
|
129 |
-
)
|
130 |
-
|
131 |
-
gr.Examples(
|
132 |
-
examples = examples,
|
133 |
-
inputs = [prompt]
|
134 |
-
)
|
135 |
-
gr.on(
|
136 |
-
triggers=[run_button.click, prompt.submit],
|
137 |
-
fn = infer,
|
138 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
139 |
-
outputs = [result, seed]
|
140 |
-
)
|
141 |
|
142 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
4 |
import torch
|
5 |
+
from diffusers import DDPMPipeline, DDIMScheduler
|
6 |
+
import open_clip
|
7 |
+
import torchvision
|
8 |
+
from PIL import Image
|
9 |
+
from tqdm import tqdm
|
10 |
+
import torch.nn.functional as F
|
11 |
|
12 |
+
# Initialize device
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
14 |
|
15 |
+
# Load CLIP model
|
16 |
+
clip_model, _, preprocess = open_clip.create_model_and_transforms("ViT-B-32", pretrained="openai")
|
17 |
+
clip_model.to(device)
|
|
|
18 |
|
19 |
+
# Transform to preprocess images
|
20 |
+
tfms = torchvision.transforms.Compose(
|
21 |
+
[
|
22 |
+
torchvision.transforms.Resize((224, 224)),
|
23 |
+
torchvision.transforms.ToTensor(),
|
24 |
+
torchvision.transforms.Normalize(
|
25 |
+
mean=(0.48145466, 0.4578275, 0.40821073),
|
26 |
+
std=(0.26862954, 0.26130258, 0.27577711),
|
27 |
+
),
|
28 |
+
]
|
29 |
+
)
|
30 |
|
31 |
+
# CLIP Loss function
|
32 |
+
def clip_loss(image, text_features):
|
33 |
+
image_features = clip_model.encode_image(tfms(image).unsqueeze(0).to(device))
|
34 |
+
image_features = F.normalize(image_features, dim=-1)
|
35 |
+
text_features = F.normalize(text_features, dim=-1)
|
36 |
+
loss = (1 - torch.cosine_similarity(image_features, text_features)).mean()
|
37 |
+
return loss
|
38 |
|
39 |
+
# Load Diffusion model
|
40 |
+
model_repo_id = "muneebable/ddpm-celebahq-finetuned-anime-art" # Replace with desired model repo
|
41 |
+
image_pipe = DDPMPipeline.from_pretrained(model_repo_id)
|
42 |
+
image_pipe.to(device)
|
43 |
+
|
44 |
+
# Load scheduler
|
45 |
+
scheduler = DDIMScheduler.from_pretrained(model_repo_id)
|
46 |
+
scheduler.set_timesteps(num_inference_steps=40)
|
47 |
|
48 |
+
# Gradio Inference Function
|
49 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
50 |
if randomize_seed:
|
51 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
52 |
+
generator = torch.manual_seed(seed)
|
|
|
53 |
|
54 |
+
# Embed prompt with CLIP
|
55 |
+
text = open_clip.tokenize([prompt]).to(device)
|
56 |
+
with torch.no_grad():
|
57 |
+
text_features = clip_model.encode_text(text)
|
58 |
+
|
59 |
+
x = torch.randn(4, 3, 256, 256).to(device)
|
|
|
|
|
|
|
60 |
|
61 |
+
for i, t in tqdm(enumerate(scheduler.timesteps)):
|
62 |
+
model_input = scheduler.scale_model_input(x, t)
|
63 |
+
with torch.no_grad():
|
64 |
+
noise_pred = image_pipe.unet(model_input, t)["sample"]
|
65 |
+
cond_grad = 0
|
66 |
+
for cut in range(4):
|
67 |
+
x = x.detach().requires_grad_()
|
68 |
+
x0 = scheduler.step(noise_pred, t, x).pred_original_sample
|
69 |
+
loss = clip_loss(x0, text_features) * guidance_scale
|
70 |
+
cond_grad -= torch.autograd.grad(loss, x)[0] / 4
|
71 |
+
alpha_bar = scheduler.alphas_cumprod[i]
|
72 |
+
x = x.detach() + cond_grad * alpha_bar.sqrt()
|
73 |
+
x = scheduler.step(noise_pred, t, x).prev_sample
|
74 |
|
75 |
+
# Convert output to an image
|
76 |
+
grid = torchvision.utils.make_grid(x.detach(), nrow=4)
|
77 |
+
im = grid.permute(1, 2, 0).cpu().clip(-1, 1) * 0.5 + 0.5
|
78 |
+
result_image = Image.fromarray((im.numpy() * 255).astype(np.uint8))
|
79 |
+
|
80 |
+
return result_image, seed
|
81 |
|
82 |
+
# Gradio App
|
83 |
+
with gr.Blocks() as demo:
|
84 |
+
prompt = gr.Textbox(placeholder="Enter your prompt", label="Prompt")
|
85 |
+
run_button = gr.Button("Generate")
|
|
|
|
|
86 |
|
87 |
+
result = gr.Image(label="Generated Image")
|
88 |
+
|
89 |
+
with gr.Accordion("Advanced Settings"):
|
90 |
+
negative_prompt = gr.Textbox(label="Negative Prompt")
|
91 |
+
seed = gr.Slider(0, np.iinfo(np.int32).max, value=0, label="Seed")
|
92 |
+
randomize_seed = gr.Checkbox(True, label="Randomize Seed")
|
93 |
+
width = gr.Slider(256, 1024, value=512, label="Width")
|
94 |
+
height = gr.Slider(256, 1024, value=512, label="Height")
|
95 |
+
guidance_scale = gr.Slider(0.0, 10.0, value=7.5, label="Guidance Scale")
|
96 |
+
num_inference_steps = gr.Slider(1, 50, value=50, label="Steps")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
run_button.click(infer,
|
99 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
100 |
+
outputs=[result, seed])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
demo.queue().launch()
|