Spaces:
Running
on
Zero
Running
on
Zero
import pathlib | |
from dataclasses import asdict, dataclass | |
from enum import Enum | |
from typing import Optional | |
from omegaconf import OmegaConf | |
from sgm.inference.helpers import Img2ImgDiscretizationWrapper, do_img2img, do_sample | |
from sgm.modules.diffusionmodules.sampling import ( | |
DPMPP2MSampler, | |
DPMPP2SAncestralSampler, | |
EulerAncestralSampler, | |
EulerEDMSampler, | |
HeunEDMSampler, | |
LinearMultistepSampler, | |
) | |
from sgm.util import load_model_from_config | |
class ModelArchitecture(str, Enum): | |
SD_2_1 = "stable-diffusion-v2-1" | |
SD_2_1_768 = "stable-diffusion-v2-1-768" | |
SDXL_V0_9_BASE = "stable-diffusion-xl-v0-9-base" | |
SDXL_V0_9_REFINER = "stable-diffusion-xl-v0-9-refiner" | |
SDXL_V1_BASE = "stable-diffusion-xl-v1-base" | |
SDXL_V1_REFINER = "stable-diffusion-xl-v1-refiner" | |
class Sampler(str, Enum): | |
EULER_EDM = "EulerEDMSampler" | |
HEUN_EDM = "HeunEDMSampler" | |
EULER_ANCESTRAL = "EulerAncestralSampler" | |
DPMPP2S_ANCESTRAL = "DPMPP2SAncestralSampler" | |
DPMPP2M = "DPMPP2MSampler" | |
LINEAR_MULTISTEP = "LinearMultistepSampler" | |
class Discretization(str, Enum): | |
LEGACY_DDPM = "LegacyDDPMDiscretization" | |
EDM = "EDMDiscretization" | |
class Guider(str, Enum): | |
VANILLA = "VanillaCFG" | |
IDENTITY = "IdentityGuider" | |
class Thresholder(str, Enum): | |
NONE = "None" | |
class SamplingParams: | |
width: int = 1024 | |
height: int = 1024 | |
steps: int = 50 | |
sampler: Sampler = Sampler.DPMPP2M | |
discretization: Discretization = Discretization.LEGACY_DDPM | |
guider: Guider = Guider.VANILLA | |
thresholder: Thresholder = Thresholder.NONE | |
scale: float = 6.0 | |
aesthetic_score: float = 5.0 | |
negative_aesthetic_score: float = 5.0 | |
img2img_strength: float = 1.0 | |
orig_width: int = 1024 | |
orig_height: int = 1024 | |
crop_coords_top: int = 0 | |
crop_coords_left: int = 0 | |
sigma_min: float = 0.0292 | |
sigma_max: float = 14.6146 | |
rho: float = 3.0 | |
s_churn: float = 0.0 | |
s_tmin: float = 0.0 | |
s_tmax: float = 999.0 | |
s_noise: float = 1.0 | |
eta: float = 1.0 | |
order: int = 4 | |
class SamplingSpec: | |
width: int | |
height: int | |
channels: int | |
factor: int | |
is_legacy: bool | |
config: str | |
ckpt: str | |
is_guided: bool | |
model_specs = { | |
ModelArchitecture.SD_2_1: SamplingSpec( | |
height=512, | |
width=512, | |
channels=4, | |
factor=8, | |
is_legacy=True, | |
config="sd_2_1.yaml", | |
ckpt="v2-1_512-ema-pruned.safetensors", | |
is_guided=True, | |
), | |
ModelArchitecture.SD_2_1_768: SamplingSpec( | |
height=768, | |
width=768, | |
channels=4, | |
factor=8, | |
is_legacy=True, | |
config="sd_2_1_768.yaml", | |
ckpt="v2-1_768-ema-pruned.safetensors", | |
is_guided=True, | |
), | |
ModelArchitecture.SDXL_V0_9_BASE: SamplingSpec( | |
height=1024, | |
width=1024, | |
channels=4, | |
factor=8, | |
is_legacy=False, | |
config="sd_xl_base.yaml", | |
ckpt="sd_xl_base_0.9.safetensors", | |
is_guided=True, | |
), | |
ModelArchitecture.SDXL_V0_9_REFINER: SamplingSpec( | |
height=1024, | |
width=1024, | |
channels=4, | |
factor=8, | |
is_legacy=True, | |
config="sd_xl_refiner.yaml", | |
ckpt="sd_xl_refiner_0.9.safetensors", | |
is_guided=True, | |
), | |
ModelArchitecture.SDXL_V1_BASE: SamplingSpec( | |
height=1024, | |
width=1024, | |
channels=4, | |
factor=8, | |
is_legacy=False, | |
config="sd_xl_base.yaml", | |
ckpt="sd_xl_base_1.0.safetensors", | |
is_guided=True, | |
), | |
ModelArchitecture.SDXL_V1_REFINER: SamplingSpec( | |
height=1024, | |
width=1024, | |
channels=4, | |
factor=8, | |
is_legacy=True, | |
config="sd_xl_refiner.yaml", | |
ckpt="sd_xl_refiner_1.0.safetensors", | |
is_guided=True, | |
), | |
} | |
class SamplingPipeline: | |
def __init__( | |
self, | |
model_id: ModelArchitecture, | |
model_path="checkpoints", | |
config_path="configs/inference", | |
device="cuda", | |
use_fp16=True, | |
) -> None: | |
if model_id not in model_specs: | |
raise ValueError(f"Model {model_id} not supported") | |
self.model_id = model_id | |
self.specs = model_specs[self.model_id] | |
self.config = str(pathlib.Path(config_path, self.specs.config)) | |
self.ckpt = str(pathlib.Path(model_path, self.specs.ckpt)) | |
self.device = device | |
self.model = self._load_model(device=device, use_fp16=use_fp16) | |
def _load_model(self, device="cuda", use_fp16=True): | |
config = OmegaConf.load(self.config) | |
model = load_model_from_config(config, self.ckpt) | |
if model is None: | |
raise ValueError(f"Model {self.model_id} could not be loaded") | |
model.to(device) | |
if use_fp16: | |
model.conditioner.half() | |
model.model.half() | |
return model | |
def text_to_image( | |
self, | |
params: SamplingParams, | |
prompt: str, | |
negative_prompt: str = "", | |
samples: int = 1, | |
return_latents: bool = False, | |
): | |
sampler = get_sampler_config(params) | |
value_dict = asdict(params) | |
value_dict["prompt"] = prompt | |
value_dict["negative_prompt"] = negative_prompt | |
value_dict["target_width"] = params.width | |
value_dict["target_height"] = params.height | |
return do_sample( | |
self.model, | |
sampler, | |
value_dict, | |
samples, | |
params.height, | |
params.width, | |
self.specs.channels, | |
self.specs.factor, | |
force_uc_zero_embeddings=["txt"] if not self.specs.is_legacy else [], | |
return_latents=return_latents, | |
filter=None, | |
) | |
def image_to_image( | |
self, | |
params: SamplingParams, | |
image, | |
prompt: str, | |
negative_prompt: str = "", | |
samples: int = 1, | |
return_latents: bool = False, | |
): | |
sampler = get_sampler_config(params) | |
if params.img2img_strength < 1.0: | |
sampler.discretization = Img2ImgDiscretizationWrapper( | |
sampler.discretization, | |
strength=params.img2img_strength, | |
) | |
height, width = image.shape[2], image.shape[3] | |
value_dict = asdict(params) | |
value_dict["prompt"] = prompt | |
value_dict["negative_prompt"] = negative_prompt | |
value_dict["target_width"] = width | |
value_dict["target_height"] = height | |
return do_img2img( | |
image, | |
self.model, | |
sampler, | |
value_dict, | |
samples, | |
force_uc_zero_embeddings=["txt"] if not self.specs.is_legacy else [], | |
return_latents=return_latents, | |
filter=None, | |
) | |
def refiner( | |
self, | |
params: SamplingParams, | |
image, | |
prompt: str, | |
negative_prompt: Optional[str] = None, | |
samples: int = 1, | |
return_latents: bool = False, | |
): | |
sampler = get_sampler_config(params) | |
value_dict = { | |
"orig_width": image.shape[3] * 8, | |
"orig_height": image.shape[2] * 8, | |
"target_width": image.shape[3] * 8, | |
"target_height": image.shape[2] * 8, | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"crop_coords_top": 0, | |
"crop_coords_left": 0, | |
"aesthetic_score": 6.0, | |
"negative_aesthetic_score": 2.5, | |
} | |
return do_img2img( | |
image, | |
self.model, | |
sampler, | |
value_dict, | |
samples, | |
skip_encode=True, | |
return_latents=return_latents, | |
filter=None, | |
) | |
def get_guider_config(params: SamplingParams): | |
if params.guider == Guider.IDENTITY: | |
guider_config = { | |
"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider" | |
} | |
elif params.guider == Guider.VANILLA: | |
scale = params.scale | |
thresholder = params.thresholder | |
if thresholder == Thresholder.NONE: | |
dyn_thresh_config = { | |
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding" | |
} | |
else: | |
raise NotImplementedError | |
guider_config = { | |
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG", | |
"params": {"scale": scale, "dyn_thresh_config": dyn_thresh_config}, | |
} | |
else: | |
raise NotImplementedError | |
return guider_config | |
def get_discretization_config(params: SamplingParams): | |
if params.discretization == Discretization.LEGACY_DDPM: | |
discretization_config = { | |
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization", | |
} | |
elif params.discretization == Discretization.EDM: | |
discretization_config = { | |
"target": "sgm.modules.diffusionmodules.discretizer.EDMDiscretization", | |
"params": { | |
"sigma_min": params.sigma_min, | |
"sigma_max": params.sigma_max, | |
"rho": params.rho, | |
}, | |
} | |
else: | |
raise ValueError(f"unknown discretization {params.discretization}") | |
return discretization_config | |
def get_sampler_config(params: SamplingParams): | |
discretization_config = get_discretization_config(params) | |
guider_config = get_guider_config(params) | |
sampler = None | |
if params.sampler == Sampler.EULER_EDM: | |
return EulerEDMSampler( | |
num_steps=params.steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
s_churn=params.s_churn, | |
s_tmin=params.s_tmin, | |
s_tmax=params.s_tmax, | |
s_noise=params.s_noise, | |
verbose=True, | |
) | |
if params.sampler == Sampler.HEUN_EDM: | |
return HeunEDMSampler( | |
num_steps=params.steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
s_churn=params.s_churn, | |
s_tmin=params.s_tmin, | |
s_tmax=params.s_tmax, | |
s_noise=params.s_noise, | |
verbose=True, | |
) | |
if params.sampler == Sampler.EULER_ANCESTRAL: | |
return EulerAncestralSampler( | |
num_steps=params.steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
eta=params.eta, | |
s_noise=params.s_noise, | |
verbose=True, | |
) | |
if params.sampler == Sampler.DPMPP2S_ANCESTRAL: | |
return DPMPP2SAncestralSampler( | |
num_steps=params.steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
eta=params.eta, | |
s_noise=params.s_noise, | |
verbose=True, | |
) | |
if params.sampler == Sampler.DPMPP2M: | |
return DPMPP2MSampler( | |
num_steps=params.steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
verbose=True, | |
) | |
if params.sampler == Sampler.LINEAR_MULTISTEP: | |
return LinearMultistepSampler( | |
num_steps=params.steps, | |
discretization_config=discretization_config, | |
guider_config=guider_config, | |
order=params.order, | |
verbose=True, | |
) | |
raise ValueError(f"unknown sampler {params.sampler}!") | |