Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,164 Bytes
7e93a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import einops
import torch
import torch.nn.functional as F
import torch.utils.benchmark as benchmark
from torch.backends.cuda import SDPBackend
from sgm.modules.attention import BasicTransformerBlock, SpatialTransformer
def benchmark_attn():
# Lets define a helpful benchmarking function:
# https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html
device = "cuda" if torch.cuda.is_available() else "cpu"
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
# Lets define the hyper-parameters of our input
batch_size = 32
max_sequence_len = 1024
num_heads = 32
embed_dimension = 32
dtype = torch.float16
query = torch.rand(
batch_size,
num_heads,
max_sequence_len,
embed_dimension,
device=device,
dtype=dtype,
)
key = torch.rand(
batch_size,
num_heads,
max_sequence_len,
embed_dimension,
device=device,
dtype=dtype,
)
value = torch.rand(
batch_size,
num_heads,
max_sequence_len,
embed_dimension,
device=device,
dtype=dtype,
)
print(f"q/k/v shape:", query.shape, key.shape, value.shape)
# Lets explore the speed of each of the 3 implementations
from torch.backends.cuda import SDPBackend, sdp_kernel
# Helpful arguments mapper
backend_map = {
SDPBackend.MATH: {
"enable_math": True,
"enable_flash": False,
"enable_mem_efficient": False,
},
SDPBackend.FLASH_ATTENTION: {
"enable_math": False,
"enable_flash": True,
"enable_mem_efficient": False,
},
SDPBackend.EFFICIENT_ATTENTION: {
"enable_math": False,
"enable_flash": False,
"enable_mem_efficient": True,
},
}
from torch.profiler import ProfilerActivity, profile, record_function
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
print(
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
)
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("Default detailed stats"):
for _ in range(25):
o = F.scaled_dot_product_attention(query, key, value)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
print(
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
)
with sdp_kernel(**backend_map[SDPBackend.MATH]):
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("Math implmentation stats"):
for _ in range(25):
o = F.scaled_dot_product_attention(query, key, value)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
try:
print(
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
)
except RuntimeError:
print("FlashAttention is not supported. See warnings for reasons.")
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("FlashAttention stats"):
for _ in range(25):
o = F.scaled_dot_product_attention(query, key, value)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
try:
print(
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
)
except RuntimeError:
print("EfficientAttention is not supported. See warnings for reasons.")
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("EfficientAttention stats"):
for _ in range(25):
o = F.scaled_dot_product_attention(query, key, value)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
def run_model(model, x, context):
return model(x, context)
def benchmark_transformer_blocks():
device = "cuda" if torch.cuda.is_available() else "cpu"
import torch.utils.benchmark as benchmark
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
checkpoint = True
compile = False
batch_size = 32
h, w = 64, 64
context_len = 77
embed_dimension = 1024
context_dim = 1024
d_head = 64
transformer_depth = 4
n_heads = embed_dimension // d_head
dtype = torch.float16
model_native = SpatialTransformer(
embed_dimension,
n_heads,
d_head,
context_dim=context_dim,
use_linear=True,
use_checkpoint=checkpoint,
attn_type="softmax",
depth=transformer_depth,
sdp_backend=SDPBackend.FLASH_ATTENTION,
).to(device)
model_efficient_attn = SpatialTransformer(
embed_dimension,
n_heads,
d_head,
context_dim=context_dim,
use_linear=True,
depth=transformer_depth,
use_checkpoint=checkpoint,
attn_type="softmax-xformers",
).to(device)
if not checkpoint and compile:
print("compiling models")
model_native = torch.compile(model_native)
model_efficient_attn = torch.compile(model_efficient_attn)
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype)
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype)
from torch.profiler import ProfilerActivity, profile, record_function
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
with torch.autocast("cuda"):
print(
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds"
)
print(
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds"
)
print(75 * "+")
print("NATIVE")
print(75 * "+")
torch.cuda.reset_peak_memory_stats()
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("NativeAttention stats"):
for _ in range(25):
model_native(x, c)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block")
print(75 * "+")
print("Xformers")
print(75 * "+")
torch.cuda.reset_peak_memory_stats()
with profile(
activities=activities, record_shapes=False, profile_memory=True
) as prof:
with record_function("xformers stats"):
for _ in range(25):
model_efficient_attn(x, c)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block")
def test01():
# conv1x1 vs linear
from sgm.util import count_params
conv = torch.nn.Conv2d(3, 32, kernel_size=1).cuda()
print(count_params(conv))
linear = torch.nn.Linear(3, 32).cuda()
print(count_params(linear))
print(conv.weight.shape)
# use same initialization
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1))
linear.bias = torch.nn.Parameter(conv.bias)
print(linear.weight.shape)
x = torch.randn(11, 3, 64, 64).cuda()
xr = einops.rearrange(x, "b c h w -> b (h w) c").contiguous()
print(xr.shape)
out_linear = linear(xr)
print(out_linear.mean(), out_linear.shape)
out_conv = conv(x)
print(out_conv.mean(), out_conv.shape)
print("done with test01.\n")
def test02():
# try cosine flash attention
import time
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
print("testing cosine flash attention...")
DIM = 1024
SEQLEN = 4096
BS = 16
print(" softmax (vanilla) first...")
model = BasicTransformerBlock(
dim=DIM,
n_heads=16,
d_head=64,
dropout=0.0,
context_dim=None,
attn_mode="softmax",
).cuda()
try:
x = torch.randn(BS, SEQLEN, DIM).cuda()
tic = time.time()
y = model(x)
toc = time.time()
print(y.shape, toc - tic)
except RuntimeError as e:
# likely oom
print(str(e))
print("\n now flash-cosine...")
model = BasicTransformerBlock(
dim=DIM,
n_heads=16,
d_head=64,
dropout=0.0,
context_dim=None,
attn_mode="flash-cosine",
).cuda()
x = torch.randn(BS, SEQLEN, DIM).cuda()
tic = time.time()
y = model(x)
toc = time.time()
print(y.shape, toc - tic)
print("done with test02.\n")
if __name__ == "__main__":
# test01()
# test02()
# test03()
# benchmark_attn()
benchmark_transformer_blocks()
print("done.")
|