multimodalart HF staff commited on
Commit
44ac339
·
1 Parent(s): 8a48df3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -34,11 +34,11 @@ model = Blip2ForConditionalGeneration.from_pretrained(
34
 
35
  training_option_settings = {
36
  "face": {
37
- "rank": 64,
38
  "lr_scheduler": "constant",
39
  "with_prior_preservation": True,
40
  "class_prompt": "a photo of a person",
41
- "train_steps_multiplier": 100,
42
  "file_count": 150,
43
  "dataset_path": FACES_DATASET_PATH
44
  },
@@ -49,12 +49,19 @@ training_option_settings = {
49
  "class_prompt": "",
50
  "train_steps_multiplier": 150
51
  },
 
 
 
 
 
 
 
52
  "object": {
53
- "rank": 8,
54
  "lr_scheduler": "constant",
55
  "with_prior_preservation": False,
56
  "class_prompt": "",
57
- "train_steps_multiplier": 150
58
  },
59
  "custom": {
60
  "rank": 32,
@@ -69,7 +76,7 @@ num_images_settings = {
69
  #>24 images, 1 repeat; 10<x<24 images 2 repeats; <10 images 3 repeats
70
  "repeats": [(24, 1), (10, 2), (0, 3)],
71
  "train_steps_min": 500,
72
- "train_steps_max": 2400
73
  }
74
 
75
  def load_captioning(uploaded_images, option):
@@ -106,6 +113,8 @@ def make_options_visible(option):
106
  sentence = "A photo of TOK"
107
  elif option == "style":
108
  sentence = "in the style of TOK"
 
 
109
  elif option == "custom":
110
  sentence = "TOK"
111
  return (
@@ -522,7 +531,7 @@ with gr.Blocks(css=css, theme=theme) as demo:
522
  with gr.Column(elem_classes=["main_unlogged"]) as main_ui:
523
  lora_name = gr.Textbox(label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
524
  training_option = gr.Radio(
525
- label="What are you training?", choices=["object", "style", "face", "custom"]
526
  )
527
  concept_sentence = gr.Textbox(
528
  label="Concept sentence",
 
34
 
35
  training_option_settings = {
36
  "face": {
37
+ "rank": 32,
38
  "lr_scheduler": "constant",
39
  "with_prior_preservation": True,
40
  "class_prompt": "a photo of a person",
41
+ "train_steps_multiplier": 150,
42
  "file_count": 150,
43
  "dataset_path": FACES_DATASET_PATH
44
  },
 
49
  "class_prompt": "",
50
  "train_steps_multiplier": 150
51
  },
52
+ "character": {
53
+ "rank": 32,
54
+ "lr_scheduler": "constant",
55
+ "with_prior_preservation": False,
56
+ "class_prompt": "",
57
+ "train_steps_multiplier": 200
58
+ },
59
  "object": {
60
+ "rank": 16,
61
  "lr_scheduler": "constant",
62
  "with_prior_preservation": False,
63
  "class_prompt": "",
64
+ "train_steps_multiplier": 50
65
  },
66
  "custom": {
67
  "rank": 32,
 
76
  #>24 images, 1 repeat; 10<x<24 images 2 repeats; <10 images 3 repeats
77
  "repeats": [(24, 1), (10, 2), (0, 3)],
78
  "train_steps_min": 500,
79
+ "train_steps_max": 1500
80
  }
81
 
82
  def load_captioning(uploaded_images, option):
 
113
  sentence = "A photo of TOK"
114
  elif option == "style":
115
  sentence = "in the style of TOK"
116
+ elif option == "character":
117
+ sentence = "A TOK character"
118
  elif option == "custom":
119
  sentence = "TOK"
120
  return (
 
531
  with gr.Column(elem_classes=["main_unlogged"]) as main_ui:
532
  lora_name = gr.Textbox(label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
533
  training_option = gr.Radio(
534
+ label="What are you training?", choices=["object", "style", "character", "face", "custom"]
535
  )
536
  concept_sentence = gr.Textbox(
537
  label="Concept sentence",