multimodalart's picture
Create app.py
3a4f548 verified
raw
history blame
711 Bytes
import gradio as gr
import cv2
from insightface.app import FaceAnalysis
import torch
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
def calculate(photo):
image = cv2.imread(photo)
faces = app.get(image)
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
return faceid_embeds
with gr.Blocks() as demo:
face_photo = gr.Image(label="Photo", type="filepath")
output = gr.JSON()
greet_btn = gr.Button("Calculate")
greet_btn.click(fn=calculate, inputs=face_photo, outputs=output, api_name="calculate_face_embedding")
if __name__ == "__main__":
demo.launch()