hairfastgan / app.py
multimodalart's picture
Update app.py
c21edc5 verified
raw
history blame
1.61 kB
import subprocess
import shutil
import os
import gradio as gr
import torchvision.transforms as T
import sys
import spaces
subprocess.run(["git", "clone", "https://github.com/AIRI-Institute/HairFastGAN"], check=True)
os.chdir("HairFastGAN")
subprocess.run(["git", "clone", "https://huggingface.co/AIRI-Institute/HairFastGAN"], check=True)
os.chdir("HairFastGAN")
subprocess.run(["git", "lfs", "pull"], check=True)
os.chdir("..")
shutil.move("HairFastGAN/pretrained_models", "pretrained_models")
shutil.move("HairFastGAN/input", "input")
shutil.rmtree("HairFastGAN")
items = os.listdir()
for item in items:
print(item)
shutil.move(item, os.path.join('..', item))
os.chdir("..")
shutil.rmtree("HairFastGAN")
from hair_swap import HairFast, get_parser
hair_fast = HairFast(get_parser().parse_args([]))
@spaces.GPU
def swap_hair(source, target_1, target_2):
result = hair_fast(face_img, shape_img, color_img)
final_image = hair_fast.swap(face_path, shape_path, color_path)
return T.functional.to_pil_image(final_image)
with gr.Blocks() as demo:
gr.Markdown("Start typing below and then click **Run** to see the output.")
with gr.Row():
source = gr.Image(label="Photo that you want to replace the hair", type="filepath")
target_1 = gr.Image(label="Reference hair you want to get", type="filepath")
target_2 = gr.Image(label="Reference color hair you want to get (optional)", type="filepath")
btn = gr.Button("Get the haircut")
output = gr.Image(label="Your result")
btn.click(fn=update, inputs=inp, outputs=out)
demo.launch()