Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -75,8 +75,6 @@ for item in sdxl_loras_raw:
|
|
75 |
"state_dict": state_dict
|
76 |
}
|
77 |
|
78 |
-
sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True]
|
79 |
-
|
80 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
81 |
|
82 |
# download models
|
@@ -125,7 +123,7 @@ pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config,
|
|
125 |
pipe.load_ip_adapter_instantid(face_adapter)
|
126 |
pipe.set_ip_adapter_scale(0.8)
|
127 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
128 |
-
zoe.to(
|
129 |
|
130 |
original_pipe = copy.deepcopy(pipe)
|
131 |
pipe.to(device)
|
@@ -256,7 +254,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
256 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
257 |
|
258 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
259 |
-
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
260 |
cross_attention_kwargs = None
|
261 |
print("Last LoRA: ", last_lora)
|
262 |
print("Current LoRA: ", repo_name)
|
@@ -265,7 +263,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
265 |
if(last_fused):
|
266 |
pipe.unfuse_lora()
|
267 |
pipe.unload_lora_weights()
|
268 |
-
pipe.load_lora_weights(
|
269 |
pipe.fuse_lora(lora_scale)
|
270 |
last_fused = True
|
271 |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
|
@@ -325,7 +323,6 @@ def deselect():
|
|
325 |
|
326 |
with gr.Blocks(css="custom.css") as demo:
|
327 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
328 |
-
gr_sdxl_loras_new = gr.State(value=sdxl_loras_raw_new)
|
329 |
title = gr.HTML(
|
330 |
"""<h1>Face to All</h1>""",
|
331 |
elem_id="title",
|
|
|
75 |
"state_dict": state_dict
|
76 |
}
|
77 |
|
|
|
|
|
78 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
79 |
|
80 |
# download models
|
|
|
123 |
pipe.load_ip_adapter_instantid(face_adapter)
|
124 |
pipe.set_ip_adapter_scale(0.8)
|
125 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
126 |
+
zoe.to(device)
|
127 |
|
128 |
original_pipe = copy.deepcopy(pipe)
|
129 |
pipe.to(device)
|
|
|
254 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
255 |
|
256 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
257 |
+
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
258 |
cross_attention_kwargs = None
|
259 |
print("Last LoRA: ", last_lora)
|
260 |
print("Current LoRA: ", repo_name)
|
|
|
263 |
if(last_fused):
|
264 |
pipe.unfuse_lora()
|
265 |
pipe.unload_lora_weights()
|
266 |
+
pipe.load_lora_weights(full_path_lora)
|
267 |
pipe.fuse_lora(lora_scale)
|
268 |
last_fused = True
|
269 |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
|
|
|
323 |
|
324 |
with gr.Blocks(css="custom.css") as demo:
|
325 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
|
|
326 |
title = gr.HTML(
|
327 |
"""<h1>Face to All</h1>""",
|
328 |
elem_id="title",
|