Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler | |
import lora | |
import copy | |
import json | |
import gc | |
import random | |
from urllib.parse import quote | |
import gdown | |
import os | |
import diffusers | |
from diffusers.utils import load_image | |
from diffusers.models import ControlNetModel | |
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler | |
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
from insightface.app import FaceAnalysis | |
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps | |
from controlnet_aux import ZoeDetector | |
with open("sdxl_loras.json", "r") as file: | |
data = json.load(file) | |
sdxl_loras_raw = [ | |
{ | |
"image": item["image"], | |
"title": item["title"], | |
"repo": item["repo"], | |
"trigger_word": item["trigger_word"], | |
"weights": item["weights"], | |
"is_compatible": item["is_compatible"], | |
"is_pivotal": item.get("is_pivotal", False), | |
"text_embedding_weights": item.get("text_embedding_weights", None), | |
"likes": item.get("likes", 0), | |
"downloads": item.get("downloads", 0), | |
"is_nc": item.get("is_nc", False), | |
"new": item.get("new", False), | |
} | |
for item in data | |
] | |
device = "cuda" | |
state_dicts = {} | |
for item in sdxl_loras_raw: | |
saved_name = hf_hub_download(item["repo"], item["weights"]) | |
if not saved_name.endswith('.safetensors'): | |
state_dict = torch.load(saved_name) | |
else: | |
state_dict = load_file(saved_name) | |
state_dicts[item["repo"]] = { | |
"saved_name": saved_name, | |
"state_dict": state_dict | |
} | |
sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True] | |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True] | |
# download models | |
hf_hub_download( | |
repo_id="InstantX/InstantID", | |
filename="ControlNetModel/config.json", | |
local_dir="/data/checkpoints", | |
) | |
hf_hub_download( | |
repo_id="InstantX/InstantID", | |
filename="ControlNetModel/diffusion_pytorch_model.safetensors", | |
local_dir="/data/checkpoints", | |
) | |
hf_hub_download( | |
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints" | |
) | |
hf_hub_download( | |
repo_id="latent-consistency/lcm-lora-sdxl", | |
filename="pytorch_lora_weights.safetensors", | |
local_dir="/data/checkpoints", | |
) | |
# download antelopev2 | |
gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True) | |
# unzip antelopev2.zip | |
os.system("unzip /data/antelopev2.zip -d /data/models/") | |
app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
# prepare models under ./checkpoints | |
face_adapter = f'/data/checkpoints/ip-adapter.bin' | |
controlnet_path = f'/data/checkpoints/ControlNetModel' | |
# load IdentityNet | |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) | |
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21", | |
vae=vae, | |
controlnet=[identitynet, zoedepthnet], | |
torch_dtype=torch.float16) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) | |
pipe.load_ip_adapter_instantid(face_adapter) | |
pipe.set_ip_adapter_scale(0.8) | |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators") | |
zoe.to("cuda") | |
original_pipe = copy.deepcopy(pipe) | |
pipe.to(device) | |
last_lora = "" | |
last_merged = False | |
last_fused = False | |
js = ''' | |
var button = document.getElementById('button'); | |
// Add a click event listener to the button | |
button.addEventListener('click', function() { | |
element.classList.add('selected'); | |
}); | |
''' | |
def update_selection(selected_state: gr.SelectData, sdxl_loras, is_new=False): | |
lora_repo = sdxl_loras[selected_state.index]["repo"] | |
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"] | |
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA" | |
weight_name = sdxl_loras[selected_state.index]["weights"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }" | |
is_compatible = sdxl_loras[selected_state.index]["is_compatible"] | |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"] | |
use_with_diffusers = f''' | |
## Using [`{lora_repo}`](https://huggingface.co/{lora_repo}) | |
## Use it with diffusers: | |
''' | |
if is_compatible: | |
use_with_diffusers += f''' | |
from diffusers import StableDiffusionXLPipeline | |
import torch | |
model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) | |
pipe.to("cuda") | |
pipe.load_lora_weights("{lora_repo}", weight_name="{weight_name}") | |
prompt = "{instance_prompt}..." | |
lora_scale= 0.9 | |
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={{"scale": lora_scale}}).images[0] | |
image.save("image.png") | |
''' | |
elif not is_pivotal: | |
use_with_diffusers += "This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with `bmaltais/kohya_ss` LoRA class, check out this [Google Colab](https://colab.research.google.com/drive/14aEJsKdEQ9_kyfsiV6JDok799kxPul0j )" | |
else: | |
use_with_diffusers += f"This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with sdxl-cog `TokenEmbeddingsHandler` class, check out the [model repo](https://huggingface.co/{lora_repo}#inference-with-🧨-diffusers)" | |
use_with_uis = f''' | |
## Use it with Comfy UI, Invoke AI, SD.Next, AUTO1111: | |
### Download the `*.safetensors` weights of [here](https://huggingface.co/{lora_repo}/resolve/main/{weight_name}) | |
- [ComfyUI guide](https://comfyanonymous.github.io/ComfyUI_examples/lora/) | |
- [Invoke AI guide](https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/?h=lora#using-loras) | |
- [SD.Next guide](https://github.com/vladmandic/automatic) | |
- [AUTOMATIC1111 guide](https://stable-diffusion-art.com/lora/) | |
''' | |
if(is_new): | |
if(selected_state.index == 0): | |
selected_state.index = -9999 | |
else: | |
selected_state.index *= -1 | |
return ( | |
updated_text, | |
instance_prompt, | |
gr.update(placeholder=new_placeholder), | |
selected_state, | |
use_with_diffusers, | |
use_with_uis, | |
gr.Gallery(selected_index=None) | |
) | |
def check_selected(selected_state): | |
if not selected_state: | |
raise gr.Error("You must select a LoRA") | |
def merge_incompatible_lora(full_path_lora, lora_scale): | |
for weights_file in [full_path_lora]: | |
if ";" in weights_file: | |
weights_file, multiplier = weights_file.split(";") | |
multiplier = float(multiplier) | |
else: | |
multiplier = lora_scale | |
lora_model, weights_sd = lora.create_network_from_weights( | |
multiplier, | |
full_path_lora, | |
pipe.vae, | |
pipe.text_encoder, | |
pipe.unet, | |
for_inference=True, | |
) | |
lora_model.merge_to( | |
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda" | |
) | |
del weights_sd | |
del lora_model | |
gc.collect() | |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_loras_new, progress=gr.Progress(track_tqdm=True)): | |
global last_lora, last_merged, last_fused, pipe | |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face | |
face_emb = face_info['embedding'] | |
face_kps = draw_kps(face_image, face_info['kps']) | |
#prepare face zoe | |
with torch.no_grad(): | |
image_zoe = zoe(face_image) | |
width, height = face_kps.size | |
images = [face_kps, image_zoe.resize((height, width))] | |
if(selected_state.index < 0): | |
if(selected_state.index == -9999): | |
selected_state.index = 0 | |
else: | |
selected_state.index *= -1 | |
sdxl_loras = sdxl_loras_new | |
print("Selected State: ", selected_state.index) | |
print(sdxl_loras[selected_state.index]["repo"]) | |
if negative == "": | |
negative = None | |
if not selected_state: | |
raise gr.Error("You must select a LoRA") | |
repo_name = sdxl_loras[selected_state.index]["repo"] | |
weight_name = sdxl_loras[selected_state.index]["weights"] | |
full_path_lora = state_dicts[repo_name]["saved_name"] | |
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"]) | |
cross_attention_kwargs = None | |
if last_lora != repo_name: | |
if(last_fused): | |
pipe.unfuse_lora() | |
pipe.load_lora_weights(loaded_state_dict) | |
pipe.fuse_lora() | |
last_fused = True | |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"] | |
if(is_pivotal): | |
#Add the textual inversion embeddings from pivotal tuning models | |
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"] | |
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model") | |
state_dict_embedding = load_file(embedding_path) | |
print(state_dict_embedding) | |
try: | |
pipe.unload_textual_inversion() | |
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
except: | |
pipe.unload_textual_inversion() | |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative, | |
width=1024, | |
height=1024, | |
image_embeds=face_emb, | |
image=face_image, | |
strength=0.85, | |
control_image=images, | |
num_inference_steps=20, | |
guidance_scale = 7, | |
controlnet_conditioning_scale=[0.8, 0.8], | |
).images[0] | |
last_lora = repo_name | |
gc.collect() | |
return image, gr.update(visible=True) | |
def shuffle_gallery(sdxl_loras): | |
random.shuffle(sdxl_loras) | |
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras | |
def swap_gallery(order, sdxl_loras): | |
if(order == "random"): | |
return shuffle_gallery(sdxl_loras) | |
else: | |
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True) | |
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery | |
def deselect(): | |
return gr.Gallery(selected_index=None) | |
with gr.Blocks(css="custom.css") as demo: | |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw) | |
gr_sdxl_loras_new = gr.State(value=sdxl_loras_raw_new) | |
title = gr.HTML( | |
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> Face to All</h1>""", | |
elem_id="title", | |
) | |
selected_state = gr.State() | |
with gr.Row(elem_id="main_app"): | |
with gr.Group(elem_id="gallery_box"): | |
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil") | |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", ) | |
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio") | |
new_gallery = gr.Gallery(label="New LoRAs", elem_id="gallery_new", columns=3, value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False) | |
gallery = gr.Gallery( | |
#value=[(item["image"], item["title"]) for item in sdxl_loras], | |
label="SDXL LoRA Gallery", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery", | |
show_share_button=False, | |
height=784 | |
) | |
with gr.Column(): | |
prompt_title = gr.Markdown( | |
value="### Click on a LoRA in the gallery to select it", | |
visible=True, | |
elem_id="selected_lora", | |
) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt") | |
button = gr.Button("Run", elem_id="run_button") | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
result = gr.Image( | |
interactive=False, label="Generated Image", elem_id="result-image" | |
) | |
with gr.Accordion("Advanced options", open=False): | |
negative = gr.Textbox(label="Negative Prompt") | |
weight = gr.Slider(0, 10, value=0.8, step=0.1, label="LoRA weight") | |
with gr.Column(elem_id="extra_info"): | |
with gr.Accordion( | |
"Use it with: 🧨 diffusers, ComfyUI, Invoke AI, SD.Next, AUTO1111", | |
open=False, | |
elem_id="accordion", | |
): | |
with gr.Row(): | |
use_diffusers = gr.Markdown("""## Select a LoRA first 🤗""") | |
use_uis = gr.Markdown() | |
with gr.Accordion("Submit a LoRA! 📥", open=False): | |
submit_title = gr.Markdown( | |
"### Streamlined submission coming soon! Until then [suggest your LoRA in the community tab](https://huggingface.co/spaces/multimodalart/LoraTheExplorer/discussions) 🤗" | |
) | |
with gr.Group(elem_id="soon"): | |
submit_source = gr.Radio( | |
["Hugging Face", "CivitAI"], | |
label="LoRA source", | |
value="Hugging Face", | |
) | |
with gr.Row(): | |
submit_source_hf = gr.Textbox( | |
label="Hugging Face Model Repo", | |
info="In the format `username/model_id`", | |
) | |
submit_safetensors_hf = gr.Textbox( | |
label="Safetensors filename", | |
info="The filename `*.safetensors` in the model repo", | |
) | |
with gr.Row(): | |
submit_trigger_word_hf = gr.Textbox(label="Trigger word") | |
submit_image = gr.Image( | |
label="Example image (optional if the repo already contains images)" | |
) | |
submit_button = gr.Button("Submit!") | |
submit_disclaimer = gr.Markdown( | |
"This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space." | |
) | |
order_gallery.change( | |
fn=swap_gallery, | |
inputs=[order_gallery, gr_sdxl_loras], | |
outputs=[gallery, gr_sdxl_loras], | |
queue=False | |
) | |
gallery.select( | |
fn=update_selection, | |
inputs=[gr_sdxl_loras], | |
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis, new_gallery], | |
queue=False, | |
show_progress=False | |
) | |
new_gallery.select( | |
fn=update_selection, | |
inputs=[gr_sdxl_loras_new, gr.State(True)], | |
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis, gallery], | |
queue=False, | |
show_progress=False | |
) | |
prompt.submit( | |
fn=check_selected, | |
inputs=[selected_state], | |
queue=False, | |
show_progress=False | |
).success( | |
fn=run_lora, | |
inputs=[photo, prompt, negative, weight, selected_state, gr_sdxl_loras, gr_sdxl_loras_new], | |
outputs=[result, share_group], | |
) | |
button.click( | |
fn=check_selected, | |
inputs=[selected_state], | |
queue=False, | |
show_progress=False | |
).success( | |
fn=run_lora, | |
inputs=[photo, prompt, negative, weight, selected_state, gr_sdxl_loras, gr_sdxl_loras_new], | |
outputs=[result, share_group], | |
) | |
share_button.click(None, [], [], js=share_js) | |
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js) | |
demo.queue(max_size=20) | |
demo.launch(share=True) |