Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,878 Bytes
8ccf632 cf69ef7 06f0278 8ccf632 3d0c27d bc0adb1 8ccf632 06f0278 8ccf632 40023fc dd73ce4 54192f0 8ccf632 1e787e4 8ccf632 06f0278 8ccf632 e2944a6 8ccf632 3d0c27d 8ccf632 75cc32d 8ccf632 b213a9c ceb48e8 b213a9c 8ccf632 0a779d1 8ccf632 2b62414 8ccf632 b213a9c 8ccf632 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
transformer = FluxTransformer2DModel.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [merged]
Merge of the 12B param rectified flow transformers FLUX.1 [dev] and FLUX.1 [schnell], generate [dev] quality images with less steps!
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=8,
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |