muhammadsalmanalfaridzi commited on
Commit
d394950
·
verified ·
1 Parent(s): da8e54c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +404 -194
app.py CHANGED
@@ -12,7 +12,6 @@ from transformers import pipeline
12
  import numpy as np
13
  import json
14
  import torch
15
- import logging
16
 
17
  # Load Stable Diffusion Model
18
  def load_stable_diffusion_model():
@@ -32,32 +31,15 @@ def remove_background_rembg(input_path):
32
  return img
33
 
34
  def remove_background_bria(input_path):
35
- """Remove background using the Bria model."""
36
- print("Removing background using Bria for the image.")
37
-
38
- # Create a segmentation pipeline
39
- pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
40
 
41
- # Load the image
42
- input_image = Image.open(input_path).convert("RGBA")
43
-
44
- # Get the segmentation output
45
- pillow_mask = pipe(input_image, return_mask=True) # Outputs a pillow mask
46
- print("Mask obtained:", pillow_mask) # Debugging output
47
-
48
- # Create an output image based on the mask
49
- output_image = Image.new("RGBA", input_image.size)
50
-
51
- # Use the mask to create the output image
52
- for x in range(input_image.width):
53
- for y in range(input_image.height):
54
- # Assuming mask is in a binary format where foreground is True
55
- if pillow_mask.getpixel((x, y)) > 0: # Adjust based on actual mask values
56
- output_image.putpixel((x, y), input_image.getpixel((x, y)))
57
- else:
58
- output_image.putpixel((x, y), (0, 0, 0, 0)) # Set to transparent
59
 
60
- return output_image
 
 
61
 
62
  # Function to process images using prompts
63
  def text_to_image(prompt):
@@ -82,154 +64,360 @@ def text_image_to_image(input_image, prompt):
82
  return modified_image, image_path # Return the modified image and its path
83
 
84
  def get_bounding_box_with_threshold(image, threshold):
85
- # Convert image to numpy array
86
  img_array = np.array(image)
87
-
88
  # Get alpha channel
89
- alpha = img_array[:, :, 3]
90
-
91
  # Find rows and columns where alpha > threshold
92
  rows = np.any(alpha > threshold, axis=1)
93
  cols = np.any(alpha > threshold, axis=0)
94
-
95
  # Find the bounding box
96
- if np.any(rows) and np.any(cols):
97
- top, bottom = np.where(rows)[0][[0, -1]]
98
- left, right = np.where(cols)[0][[0, -1]]
 
99
  return (left, top, right, bottom)
100
  else:
101
  return None
102
-
103
  def position_logic(image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left, use_threshold=True):
104
- """Position and resize an image based on cropping and padding requirements."""
105
- image = Image.open(image_path).convert("RGBA")
106
 
107
  # Get the bounding box of the non-blank area with threshold
108
- bbox = get_bounding_box_with_threshold(image, threshold=10) if use_threshold else image.getbbox()
 
 
 
109
  log = []
110
 
111
  if bbox:
 
112
  width, height = image.size
113
  cropped_sides = []
114
- tolerance = 30 # Define a constant for transparency tolerance
115
-
116
- # Check each edge for non-transparent pixels
117
- for edge in ['top', 'bottom', 'left', 'right']:
118
- if edge == 'top' and any(image.getpixel((x, 0))[3] > tolerance for x in range(width)):
119
- cropped_sides.append(edge)
120
- elif edge == 'bottom' and any(image.getpixel((x, height - 1))[3] > tolerance for x in range(width)):
121
- cropped_sides.append(edge)
122
- elif edge == 'left' and any(image.getpixel((0, y))[3] > tolerance for y in range(height)):
123
- cropped_sides.append(edge)
124
- elif edge == 'right' and any(image.getpixel((width - 1, y))[3] > tolerance for y in range(height)):
125
- cropped_sides.append(edge)
126
-
127
- # Log cropping information
128
- info_message = f"Info for {os.path.basename(image_path)}: The following sides of the image may contain cropped objects: {', '.join(cropped_sides) if cropped_sides else 'none'}"
129
- print(info_message)
130
- log.append({"info": info_message})
 
 
 
 
 
 
 
 
 
 
 
131
 
132
  # Crop the image to the bounding box
133
  image = image.crop(bbox)
134
  log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]})
135
 
136
- # Calculate new size to expand the image
137
  target_width, target_height = canvas_size
138
  aspect_ratio = image.width / image.height
139
 
140
- # Handling image positioning and resizing based on cropped sides
141
  if len(cropped_sides) == 4:
142
- # Center crop if cropped on all sides
143
  if aspect_ratio > 1: # Landscape
144
  new_height = target_height
145
  new_width = int(new_height * aspect_ratio)
146
  left = (new_width - target_width) // 2
147
- image = image.resize((new_width, new_height), Image.LANCZOS).crop((left, 0, left + target_width, target_height))
 
148
  else: # Portrait or square
149
  new_width = target_width
150
  new_height = int(new_width / aspect_ratio)
151
  top = (new_height - target_height) // 2
152
- image = image.resize((new_width, new_height), Image.LANCZOS).crop((0, top, target_width, top + target_height))
 
153
  log.append({"action": "center_crop_resize", "new_size": f"{target_width}x{target_height}"})
154
  x, y = 0, 0
155
  elif not cropped_sides:
156
- # Expand from center
157
  new_height = target_height - padding_top - padding_bottom
158
  new_width = int(new_height * aspect_ratio)
 
159
  if new_width > target_width - padding_left - padding_right:
 
160
  new_width = target_width - padding_left - padding_right
161
  new_height = int(new_width / aspect_ratio)
162
-
 
163
  image = image.resize((new_width, new_height), Image.LANCZOS)
164
  log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
 
165
  x = (target_width - new_width) // 2
166
  y = target_height - new_height - padding_bottom
167
  else:
168
- # Handle specific cropped side cases
169
- new_width, new_height = target_width, target_height # Default values for resizing
170
- for side in cropped_sides:
171
- if side in ["top", "bottom"]:
172
- new_height = target_height - (padding_top + padding_bottom)
173
- if side in ["left", "right"]:
174
- new_width = target_width - (padding_left + padding_right)
175
-
176
- image = image.resize((new_width, new_height), Image.LANCZOS)
177
- log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
178
-
179
- # Determine position based on cropped sides
180
- x = (target_width - new_width) // 2 if "left" not in cropped_sides and "right" not in cropped_sides else (0 if "left" in cropped_sides else target_width - new_width)
181
- y = (0 if "top" in cropped_sides else target_height - new_height)
182
-
183
- log.append({"action": "position", "x": str(x), "y": str(y)})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
  return log, image, x, y
186
 
187
- # Constants for canvas sizes and paddings
188
- CANVAS_SIZES = {
189
- 'Rox': ((1080, 1080), (112, 125, 116, 125)),
190
- 'Columbia': ((730, 610), (30, 105, 35, 105)),
191
- 'Zalora': ((763, 1100), (50, 50, 200, 50))
192
- }
193
-
194
  def process_single_image(image_path, output_folder, bg_method, canvas_size_name, output_format, bg_choice, custom_color, watermark_path=None):
195
- """Processes a single image by removing its background and applying various transformations.
196
-
197
- Args:
198
- image_path (str): Path to the input image.
199
- output_folder (str): Path to the output folder.
200
- bg_method (str): Background removal method ('rembg' or 'bria').
201
- canvas_size_name (str): Name of the canvas size.
202
- output_format (str): Desired output format ('JPG' or 'PNG').
203
- bg_choice (str): Background choice ('white', 'custom', or 'transparent').
204
- custom_color (tuple): Custom background color as an RGBA tuple.
205
- watermark_path (str, optional): Path to a watermark image.
206
-
207
- Returns:
208
- tuple: A tuple containing the output path and log of actions performed.
209
- """
 
 
 
 
 
 
 
 
210
  try:
211
- canvas_size, (padding_top, padding_right, padding_bottom, padding_left) = CANVAS_SIZES[canvas_size_name]
212
- filename = os.path.basename(image_path)
213
- logging.info(f"Processing image: {filename}")
214
-
215
- # Remove background
216
- image_with_no_bg = Image.open(image_path).convert("RGBA")
217
  if bg_method == 'rembg':
218
  image_with_no_bg = remove_background_rembg(image_path)
219
  elif bg_method == 'bria':
220
  image_with_no_bg = remove_background_bria(image_path)
221
- elif bg_method == 'none':
222
- pass # Do nothing, keep original image with background
223
- else:
224
- raise ValueError("Invalid background method specified.")
225
-
226
- # Temporary file for processed image
227
  temp_image_path = os.path.join(output_folder, f"temp_{filename}")
228
  image_with_no_bg.save(temp_image_path, format='PNG')
229
 
230
  log, new_image, x, y = position_logic(temp_image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left)
231
 
232
- # Create canvas based on background choice
233
  if bg_choice == 'white':
234
  canvas = Image.new("RGBA", canvas_size, "WHITE")
235
  elif bg_choice == 'custom':
@@ -241,62 +429,45 @@ def process_single_image(image_path, output_folder, bg_method, canvas_size_name,
241
  canvas.paste(new_image, (x, y), new_image)
242
  log.append({"action": "paste", "position": [str(x), str(y)]})
243
 
244
- # Add watermark if applicable
245
- if watermark_path:
246
- watermark = Image.open(watermark_path).convert("RGBA")
247
- # Hitung posisi untuk menempatkan watermark di tengah
248
- watermark_width, watermark_height = watermark.size
249
- canvas_width, canvas_height = canvas.size
250
- # Hitung posisi (x, y) untuk watermark
251
- x = (canvas_width - watermark_width) // 2
252
- y = (canvas_height - watermark_height) // 2
253
- # Tempelkan watermark
254
- canvas.paste(watermark, (x, y), watermark)
255
- log.append({"action": "add_watermark"})
256
 
257
- # Determine output format
258
  output_ext = 'jpg' if output_format == 'JPG' else 'png'
259
  output_filename = f"{os.path.splitext(filename)[0]}.{output_ext}"
260
  output_path = os.path.join(output_folder, output_filename)
261
 
262
- # Save the canvas in the desired format
 
 
 
 
 
 
263
  if output_format == 'JPG':
264
- canvas.convert('RGB').save(output_path, format='JPEG')
 
265
  else:
266
  canvas.save(output_path, format='PNG')
267
 
268
- # Clean up temporary file
269
  os.remove(temp_image_path)
270
 
271
- logging.info(f"Processed image path: {output_path}")
272
  return [(output_path, image_path)], log
273
 
274
  except Exception as e:
275
- logging.error(f"Error processing {filename}: {e}")
276
  return None, None
277
-
278
- # Set up logging
279
- logging.basicConfig(level=logging.INFO)
 
280
 
281
  def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_size='Rox', output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
282
- """Processes images by removing backgrounds and applying various transformations.
283
-
284
- Args:
285
- input_files (str or list): Path to a ZIP file or a list of image paths.
286
- bg_method (str): Background removal method ('rembg' or 'bria').
287
- watermark_path (str, optional): Path to a watermark image.
288
- canvas_size (str): Name of the canvas size.
289
- output_format (str): Desired output format ('PNG' or 'JPG').
290
- bg_choice (str): Background choice ('transparent', 'white', or 'custom').
291
- custom_color (str): Custom background color in hex format.
292
- num_workers (int): Number of parallel workers for processing.
293
- progress (gr.Progress): Progress tracking interface.
294
-
295
- Returns:
296
- tuple: A tuple containing original images, processed images, output zip path, and total processing time.
297
- """
298
  start_time = time.time()
299
-
300
  output_folder = "processed_images"
301
  if os.path.exists(output_folder):
302
  shutil.rmtree(output_folder)
@@ -305,8 +476,6 @@ def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_s
305
  processed_images = []
306
  original_images = []
307
  all_logs = []
308
-
309
- image_files = []
310
 
311
  if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
312
  # Handle zip file
@@ -318,19 +487,20 @@ def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_s
318
  try:
319
  with zipfile.ZipFile(input_files, 'r') as zip_ref:
320
  zip_ref.extractall(input_folder)
321
- image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
322
  except zipfile.BadZipFile as e:
323
- logging.error(f"Error extracting zip file: {e}")
324
  return [], None, 0
 
 
325
  elif isinstance(input_files, list):
326
  # Handle multiple files
327
  image_files = input_files
328
  else:
329
  # Handle single file
330
  image_files = [input_files]
331
-
332
  total_images = len(image_files)
333
- logging.info(f"Total images to process: {total_images}")
334
 
335
  avg_processing_time = 0
336
  with ThreadPoolExecutor(max_workers=num_workers) as executor:
@@ -341,22 +511,29 @@ def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_s
341
  result, log = future.result()
342
  end_time_image = time.time()
343
  image_processing_time = end_time_image - start_time_image
344
-
345
  # Update average processing time
346
  avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1)
347
-
348
  if result:
349
- processed_images.extend(result)
 
 
 
 
 
 
 
 
350
  original_images.append(future_to_image[future])
351
  all_logs.append({os.path.basename(future_to_image[future]): log})
352
-
353
  # Estimate remaining time
354
  remaining_images = total_images - (idx + 1)
355
  estimated_remaining_time = remaining_images * avg_processing_time
356
-
357
  progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds")
358
  except Exception as e:
359
- logging.error(f"Error processing image {future_to_image[future]}: {e}")
360
 
361
  output_zip_path = "processed_images.zip"
362
  with zipfile.ZipFile(output_zip_path, 'w') as zipf:
@@ -366,40 +543,35 @@ def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_s
366
  # Write the comprehensive log for all images
367
  with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file:
368
  json.dump(all_logs, log_file, indent=4)
369
- logging.info("Comprehensive log saved to %s", os.path.join(output_folder, 'process_log.json'))
370
 
371
  end_time = time.time()
372
  processing_time = end_time - start_time
373
- logging.info(f"Processing time: {processing_time} seconds")
374
-
375
  return original_images, processed_images, output_zip_path, processing_time
376
 
377
- # Set up logging
378
- logging.basicConfig(level=logging.INFO)
379
-
380
  def gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
381
- """Handles input files and processes them accordingly."""
382
  progress = gr.Progress()
383
  watermark_path = watermark.name if watermark else None
384
-
385
- # Check the type of input_files and call the process_images function
386
  if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
387
- return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
388
  elif isinstance(input_files, list):
389
  return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
390
  else:
391
  return process_images(input_files.name, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
392
 
393
  def show_color_picker(bg_choice):
394
- """Shows the color picker if 'custom' background is selected."""
395
- return gr.update(visible=(bg_choice == 'custom'))
 
396
 
397
  def update_compare(evt: gr.SelectData):
398
- """Updates the displayed images and their ratios when a processed image is selected."""
399
  if isinstance(evt.value, dict) and 'caption' in evt.value:
400
- input_path = evt.value['caption'].split("Input: ")[-1]
401
  output_path = evt.value['image']['path']
402
-
403
  # Open the original and processed images
404
  original_img = Image.open(input_path)
405
  processed_img = Image.open(output_path)
@@ -408,25 +580,63 @@ def update_compare(evt: gr.SelectData):
408
  original_ratio = f"{original_img.width}x{original_img.height}"
409
  processed_ratio = f"{processed_img.width}x{processed_img.height}"
410
 
411
- return (gr.update(value=input_path),
412
- gr.update(value=output_path),
413
- gr.update(value=original_ratio),
414
- gr.update(value=processed_ratio)
415
- )
416
  else:
417
- logging.warning("No caption found in selection")
418
- return (gr.update(value=None),) * 4
419
 
420
  def process(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
421
- """Processes the images and returns the results."""
422
- try:
423
- watermark_path = watermark.name if watermark else None
424
- _, processed_images, zip_path, time_taken = gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers)
425
- processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images]
426
- return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds"
427
- except Exception as e:
428
- logging.error(f"Error in processing images: {e}")
429
- return [], None, "Error during processing"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430
 
431
  with gr.Blocks(theme="NoCrypt/[email protected]") as iface:
432
  gr.Markdown("# 🎨 Creative Image Suite: Generate, Modify, and Enhance Your Visuals")
@@ -498,7 +708,7 @@ with gr.Blocks(theme="NoCrypt/[email protected]") as iface:
498
  num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=5)
499
 
500
  with gr.Row():
501
- bg_method = gr.Radio(choices=["bria", "rembg", "none"], label="Background Removal Method", value="bria")
502
  bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Background Choice", value="white")
503
  custom_color = gr.ColorPicker(label="Custom Background Color", value="#ffffff", visible=False)
504
 
 
12
  import numpy as np
13
  import json
14
  import torch
 
15
 
16
  # Load Stable Diffusion Model
17
  def load_stable_diffusion_model():
 
31
  return img
32
 
33
  def remove_background_bria(input_path):
34
+ print(f"Removing background using bria for image: {input_path}")
35
+ device = 0 if torch.cuda.is_available() else -1
 
 
 
36
 
37
+ # Load the segmentation model
38
+ pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True, device=device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ # Process the image
41
+ result = pipe(input_path)
42
+ return result
43
 
44
  # Function to process images using prompts
45
  def text_to_image(prompt):
 
64
  return modified_image, image_path # Return the modified image and its path
65
 
66
  def get_bounding_box_with_threshold(image, threshold):
67
+ # Convert image to numpy array
68
  img_array = np.array(image)
69
+
70
  # Get alpha channel
71
+ alpha = img_array[:,:,3]
72
+
73
  # Find rows and columns where alpha > threshold
74
  rows = np.any(alpha > threshold, axis=1)
75
  cols = np.any(alpha > threshold, axis=0)
76
+
77
  # Find the bounding box
78
+ top, bottom = np.where(rows)[0][[0, -1]]
79
+ left, right = np.where(cols)[0][[0, -1]]
80
+
81
+ if left < right and top < bottom:
82
  return (left, top, right, bottom)
83
  else:
84
  return None
85
+
86
  def position_logic(image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left, use_threshold=True):
87
+ image = Image.open(image_path)
88
+ image = image.convert("RGBA")
89
 
90
  # Get the bounding box of the non-blank area with threshold
91
+ if use_threshold:
92
+ bbox = get_bounding_box_with_threshold(image, threshold=10)
93
+ else:
94
+ bbox = image.getbbox()
95
  log = []
96
 
97
  if bbox:
98
+ # Check 1 pixel around the image for non-transparent pixels
99
  width, height = image.size
100
  cropped_sides = []
101
+
102
+ # Define tolerance for transparency
103
+ tolerance = 30 # Adjust this value as needed
104
+
105
+ # Check top edge
106
+ if any(image.getpixel((x, 0))[3] > tolerance for x in range(width)):
107
+ cropped_sides.append("top")
108
+
109
+ # Check bottom edge
110
+ if any(image.getpixel((x, height-1))[3] > tolerance for x in range(width)):
111
+ cropped_sides.append("bottom")
112
+
113
+ # Check left edge
114
+ if any(image.getpixel((0, y))[3] > tolerance for y in range(height)):
115
+ cropped_sides.append("left")
116
+
117
+ # Check right edge
118
+ if any(image.getpixel((width-1, y))[3] > tolerance for y in range(height)):
119
+ cropped_sides.append("right")
120
+
121
+ if cropped_sides:
122
+ info_message = f"Info for {os.path.basename(image_path)}: The following sides of the image may contain cropped objects: {', '.join(cropped_sides)}"
123
+ print(info_message)
124
+ log.append({"info": info_message})
125
+ else:
126
+ info_message = f"Info for {os.path.basename(image_path)}: The image is not cropped."
127
+ print(info_message)
128
+ log.append({"info": info_message})
129
 
130
  # Crop the image to the bounding box
131
  image = image.crop(bbox)
132
  log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]})
133
 
134
+ # Calculate the new size to expand the image
135
  target_width, target_height = canvas_size
136
  aspect_ratio = image.width / image.height
137
 
 
138
  if len(cropped_sides) == 4:
139
+ # If the image is cropped on all sides, center crop it to fit the canvas
140
  if aspect_ratio > 1: # Landscape
141
  new_height = target_height
142
  new_width = int(new_height * aspect_ratio)
143
  left = (new_width - target_width) // 2
144
+ image = image.resize((new_width, new_height), Image.LANCZOS)
145
+ image = image.crop((left, 0, left + target_width, target_height))
146
  else: # Portrait or square
147
  new_width = target_width
148
  new_height = int(new_width / aspect_ratio)
149
  top = (new_height - target_height) // 2
150
+ image = image.resize((new_width, new_height), Image.LANCZOS)
151
+ image = image.crop((0, top, target_width, top + target_height))
152
  log.append({"action": "center_crop_resize", "new_size": f"{target_width}x{target_height}"})
153
  x, y = 0, 0
154
  elif not cropped_sides:
155
+ # If the image is not cropped, expand it from center until it touches the padding
156
  new_height = target_height - padding_top - padding_bottom
157
  new_width = int(new_height * aspect_ratio)
158
+
159
  if new_width > target_width - padding_left - padding_right:
160
+ # If width exceeds available space, adjust based on width
161
  new_width = target_width - padding_left - padding_right
162
  new_height = int(new_width / aspect_ratio)
163
+
164
+ # Resize the image
165
  image = image.resize((new_width, new_height), Image.LANCZOS)
166
  log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
167
+
168
  x = (target_width - new_width) // 2
169
  y = target_height - new_height - padding_bottom
170
  else:
171
+ # New logic for handling cropped top and left, or top and right
172
+ if set(cropped_sides) == {"top", "left"} or set(cropped_sides) == {"top", "right"}:
173
+ new_height = target_height - padding_bottom
174
+ new_width = int(new_height * aspect_ratio)
175
+
176
+ # If new width exceeds canvas width, adjust based on width
177
+ if new_width > target_width:
178
+ new_width = target_width
179
+ new_height = int(new_width / aspect_ratio)
180
+
181
+ # Resize the image
182
+ image = image.resize((new_width, new_height), Image.LANCZOS)
183
+ log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
184
+
185
+ # Set position
186
+ if "left" in cropped_sides:
187
+ x = 0
188
+ else: # right in cropped_sides
189
+ x = target_width - new_width
190
+ y = 0
191
+
192
+ # If the resized image is taller than the canvas minus padding, crop from the bottom
193
+ if new_height > target_height - padding_bottom:
194
+ crop_bottom = new_height - (target_height - padding_bottom)
195
+ image = image.crop((0, 0, new_width, new_height - crop_bottom))
196
+ new_height = target_height - padding_bottom
197
+ log.append({"action": "crop_vertical", "bottom_pixels_removed": str(crop_bottom)})
198
+
199
+ log.append({"action": "position", "x": str(x), "y": str(y)})
200
+ elif set(cropped_sides) == {"bottom", "left"} or set(cropped_sides) == {"bottom", "right"}:
201
+ # Handle bottom & left or bottom & right cropped images
202
+ new_height = target_height - padding_top
203
+ new_width = int(new_height * aspect_ratio)
204
+
205
+ # If new width exceeds canvas width, adjust based on width
206
+ if new_width > target_width - padding_left - padding_right:
207
+ new_width = target_width - padding_left - padding_right
208
+ new_height = int(new_width / aspect_ratio)
209
+
210
+ # Resize the image without cropping or stretching
211
+ image = image.resize((new_width, new_height), Image.LANCZOS)
212
+ log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
213
+
214
+ # Set position
215
+ if "left" in cropped_sides:
216
+ x = 0
217
+ else: # right in cropped_sides
218
+ x = target_width - new_width
219
+ y = target_height - new_height
220
+
221
+ log.append({"action": "position", "x": str(x), "y": str(y)})
222
+ elif set(cropped_sides) == {"bottom", "left", "right"}:
223
+ # Expand the image from the center
224
+ new_width = target_width
225
+ new_height = int(new_width / aspect_ratio)
226
+
227
+ if new_height < target_height:
228
+ new_height = target_height
229
+ new_width = int(new_height * aspect_ratio)
230
+
231
+ image = image.resize((new_width, new_height), Image.LANCZOS)
232
+
233
+ # Crop to fit the canvas
234
+ left = (new_width - target_width) // 2
235
+ top = 0
236
+ image = image.crop((left, top, left + target_width, top + target_height))
237
+
238
+ log.append({"action": "expand_and_crop", "new_size": f"{target_width}x{target_height}"})
239
+ x, y = 0, 0
240
+ elif cropped_sides == ["top"]:
241
+ # New logic for handling only top-cropped images
242
+ if image.width > image.height:
243
+ new_width = target_width
244
+ new_height = int(target_width / aspect_ratio)
245
+ else:
246
+ new_height = target_height - padding_bottom
247
+ new_width = int(new_height * aspect_ratio)
248
+
249
+ # Resize the image
250
+ image = image.resize((new_width, new_height), Image.LANCZOS)
251
+ log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
252
+
253
+ x = (target_width - new_width) // 2
254
+ y = 0 # Align to top
255
+
256
+ # Apply padding only to non-cropped sides
257
+ x = max(padding_left, min(x, target_width - new_width - padding_right))
258
+ elif cropped_sides in [["right"], ["left"]]:
259
+ # New logic for handling only right-cropped or left-cropped images
260
+ if image.width > image.height:
261
+ new_width = target_width - max(padding_left, padding_right)
262
+ new_height = int(new_width / aspect_ratio)
263
+ else:
264
+ new_height = target_height - padding_top - padding_bottom
265
+ new_width = int(new_height * aspect_ratio)
266
+
267
+ # Resize the image
268
+ image = image.resize((new_width, new_height), Image.LANCZOS)
269
+ log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
270
+
271
+ if cropped_sides == ["right"]:
272
+ x = target_width - new_width # Align to right
273
+ else: # cropped_sides == ["left"]
274
+ x = 0 # Align to left
275
+ y = target_height - new_height - padding_bottom # Respect bottom padding
276
+
277
+ # Ensure top padding is respected
278
+ if y < padding_top:
279
+ y = padding_top
280
+
281
+ log.append({"action": "position", "x": str(x), "y": str(y)})
282
+ elif set(cropped_sides) == {"left", "right"}:
283
+ # Logic for handling images cropped on both left and right sides
284
+ new_width = target_width # Expand to full width of canvas
285
+
286
+ # Calculate the aspect ratio of the original image
287
+ aspect_ratio = image.width / image.height
288
+
289
+ # Calculate the new height while maintaining aspect ratio
290
+ new_height = int(new_width / aspect_ratio)
291
+
292
+ # Resize the image
293
+ image = image.resize((new_width, new_height), Image.LANCZOS)
294
+ log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
295
+
296
+ # Set horizontal position (always 0 as it spans full width)
297
+ x = 0
298
+
299
+ # Calculate vertical position to respect bottom padding
300
+ y = target_height - new_height - padding_bottom
301
+
302
+ # If the resized image is taller than the canvas, crop from the top only
303
+ if new_height > target_height - padding_bottom:
304
+ crop_top = new_height - (target_height - padding_bottom)
305
+ image = image.crop((0, crop_top, new_width, new_height))
306
+ new_height = target_height - padding_bottom
307
+ y = 0
308
+ log.append({"action": "crop_vertical", "top_pixels_removed": str(crop_top)})
309
+ else:
310
+ # Align the image to the bottom with padding
311
+ y = target_height - new_height - padding_bottom
312
+
313
+ log.append({"action": "position", "x": str(x), "y": str(y)})
314
+ elif cropped_sides == ["bottom"]:
315
+ # Logic for handling images cropped on the bottom side
316
+ # Calculate the aspect ratio of the original image
317
+ aspect_ratio = image.width / image.height
318
+
319
+ if aspect_ratio < 1: # Portrait orientation
320
+ new_height = target_height - padding_top # Full height with top padding
321
+ new_width = int(new_height * aspect_ratio)
322
+
323
+ # If the new width exceeds the canvas width, adjust it
324
+ if new_width > target_width:
325
+ new_width = target_width
326
+ new_height = int(new_width / aspect_ratio)
327
+ else: # Landscape orientation
328
+ new_width = target_width - padding_left - padding_right
329
+ new_height = int(new_width / aspect_ratio)
330
+
331
+ # If the new height exceeds the canvas height, adjust it
332
+ if new_height > target_height:
333
+ new_height = target_height
334
+ new_width = int(new_height * aspect_ratio)
335
+
336
+ # Resize the image
337
+ image = image.resize((new_width, new_height), Image.LANCZOS)
338
+ log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
339
+
340
+ # Set horizontal position (centered)
341
+ x = (target_width - new_width) // 2
342
+
343
+ # Set vertical position (touching bottom edge for all cases)
344
+ y = target_height - new_height
345
+
346
+ log.append({"action": "position", "x": str(x), "y": str(y)})
347
+ else:
348
+ # Use the original resizing logic for other partially cropped images
349
+ if image.width > image.height:
350
+ new_width = target_width
351
+ new_height = int(target_width / aspect_ratio)
352
+ else:
353
+ new_height = target_height
354
+ new_width = int(target_height * aspect_ratio)
355
+
356
+ # Resize the image
357
+ image = image.resize((new_width, new_height), Image.LANCZOS)
358
+ log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
359
+
360
+ # Center horizontally for all images
361
+ x = (target_width - new_width) // 2
362
+ y = target_height - new_height - padding_bottom
363
+
364
+ # Adjust positions for cropped sides
365
+ if "top" in cropped_sides:
366
+ y = 0
367
+ elif "bottom" in cropped_sides:
368
+ y = target_height - new_height
369
+ if "left" in cropped_sides:
370
+ x = 0
371
+ elif "right" in cropped_sides:
372
+ x = target_width - new_width
373
+
374
+ # Apply padding only to non-cropped sides, but keep horizontal centering
375
+ if "left" not in cropped_sides and "right" not in cropped_sides:
376
+ x = (target_width - new_width) // 2 # Always center horizontally
377
+ if "top" not in cropped_sides and "bottom" not in cropped_sides:
378
+ y = max(padding_top, min(y, target_height - new_height - padding_bottom))
379
 
380
  return log, image, x, y
381
 
 
 
 
 
 
 
 
382
  def process_single_image(image_path, output_folder, bg_method, canvas_size_name, output_format, bg_choice, custom_color, watermark_path=None):
383
+ add_padding_line = False
384
+
385
+ if canvas_size_name == 'Rox':
386
+ canvas_size = (1080, 1080)
387
+ padding_top = 112
388
+ padding_right = 125
389
+ padding_bottom = 116
390
+ padding_left = 125
391
+ elif canvas_size_name == 'Columbia':
392
+ canvas_size = (730, 610)
393
+ padding_top = 30
394
+ padding_right = 105
395
+ padding_bottom = 35
396
+ padding_left = 105
397
+ elif canvas_size_name == 'Zalora':
398
+ canvas_size = (763, 1100)
399
+ padding_top = 50
400
+ padding_right = 50
401
+ padding_bottom = 200
402
+ padding_left = 50
403
+
404
+
405
+ filename = os.path.basename(image_path)
406
  try:
407
+ print(f"Processing image: {filename}")
 
 
 
 
 
408
  if bg_method == 'rembg':
409
  image_with_no_bg = remove_background_rembg(image_path)
410
  elif bg_method == 'bria':
411
  image_with_no_bg = remove_background_bria(image_path)
412
+ elif bg_method == None:
413
+ image_with_no_bg = Image.open(image_path)
414
+
 
 
 
415
  temp_image_path = os.path.join(output_folder, f"temp_{filename}")
416
  image_with_no_bg.save(temp_image_path, format='PNG')
417
 
418
  log, new_image, x, y = position_logic(temp_image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left)
419
 
420
+ # Create a new canvas with the appropriate background
421
  if bg_choice == 'white':
422
  canvas = Image.new("RGBA", canvas_size, "WHITE")
423
  elif bg_choice == 'custom':
 
429
  canvas.paste(new_image, (x, y), new_image)
430
  log.append({"action": "paste", "position": [str(x), str(y)]})
431
 
432
+ # Add visible black line for padding when background is not transparent
433
+ if add_padding_line:
434
+ draw = ImageDraw.Draw(canvas)
435
+ draw.rectangle([padding_left, padding_top, canvas_size[0] - padding_right, canvas_size[1] - padding_bottom], outline="black", width=5)
436
+ log.append({"action": "add_padding_line"})
 
 
 
 
 
 
 
437
 
 
438
  output_ext = 'jpg' if output_format == 'JPG' else 'png'
439
  output_filename = f"{os.path.splitext(filename)[0]}.{output_ext}"
440
  output_path = os.path.join(output_folder, output_filename)
441
 
442
+ # Apply watermark only if the filename ends with "_01" and watermark_path is provided
443
+ if os.path.splitext(filename)[0].endswith("_01") and watermark_path:
444
+ watermark = Image.open(watermark_path).convert("RGBA")
445
+ canvas = canvas.convert("RGBA")
446
+ canvas.paste(watermark, (0, 0), watermark)
447
+ log.append({"action": "add_watermark"})
448
+
449
  if output_format == 'JPG':
450
+ canvas = canvas.convert('RGB')
451
+ canvas.save(output_path, format='JPEG')
452
  else:
453
  canvas.save(output_path, format='PNG')
454
 
 
455
  os.remove(temp_image_path)
456
 
457
+ print(f"Processed image path: {output_path}")
458
  return [(output_path, image_path)], log
459
 
460
  except Exception as e:
461
+ print(f"Error processing {filename}: {e}")
462
  return None, None
463
+
464
+ def remove_extension(filename):
465
+ # Regular expression to match any extension at the end of the string
466
+ return re.sub(r'\.[^.]+$', '', filename)
467
 
468
  def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_size='Rox', output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469
  start_time = time.time()
470
+
471
  output_folder = "processed_images"
472
  if os.path.exists(output_folder):
473
  shutil.rmtree(output_folder)
 
476
  processed_images = []
477
  original_images = []
478
  all_logs = []
 
 
479
 
480
  if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
481
  # Handle zip file
 
487
  try:
488
  with zipfile.ZipFile(input_files, 'r') as zip_ref:
489
  zip_ref.extractall(input_folder)
 
490
  except zipfile.BadZipFile as e:
491
+ print(f"Error extracting zip file: {e}")
492
  return [], None, 0
493
+
494
+ image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
495
  elif isinstance(input_files, list):
496
  # Handle multiple files
497
  image_files = input_files
498
  else:
499
  # Handle single file
500
  image_files = [input_files]
501
+
502
  total_images = len(image_files)
503
+ print(f"Total images to process: {total_images}")
504
 
505
  avg_processing_time = 0
506
  with ThreadPoolExecutor(max_workers=num_workers) as executor:
 
511
  result, log = future.result()
512
  end_time_image = time.time()
513
  image_processing_time = end_time_image - start_time_image
514
+
515
  # Update average processing time
516
  avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1)
 
517
  if result:
518
+ if watermark_path:
519
+ get_name = future_to_image[future].split('/')
520
+ get_name = remove_extension(get_name[len(get_name)-1])
521
+ twibbon_input = f'{get_name}.png' if output_format == 'PNG' else f'{get_name}.jpg'
522
+ twibbon_output_path = os.path.join(output_folder, f'result_{start_time_image}.png')
523
+ add_twibbon(f'processed_images/{twibbon_input}', watermark_path, twibbon_output_path)
524
+ processed_images.append((twibbon_output_path, twibbon_output_path))
525
+ else:
526
+ processed_images.extend(result)
527
  original_images.append(future_to_image[future])
528
  all_logs.append({os.path.basename(future_to_image[future]): log})
529
+
530
  # Estimate remaining time
531
  remaining_images = total_images - (idx + 1)
532
  estimated_remaining_time = remaining_images * avg_processing_time
533
+
534
  progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds")
535
  except Exception as e:
536
+ print(f"Error processing image {future_to_image[future]}: {e}")
537
 
538
  output_zip_path = "processed_images.zip"
539
  with zipfile.ZipFile(output_zip_path, 'w') as zipf:
 
543
  # Write the comprehensive log for all images
544
  with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file:
545
  json.dump(all_logs, log_file, indent=4)
546
+ print("Comprehensive log saved to", os.path.join(output_folder, 'process_log.json'))
547
 
548
  end_time = time.time()
549
  processing_time = end_time - start_time
550
+ print(f"Processing time: {processing_time} seconds")
 
551
  return original_images, processed_images, output_zip_path, processing_time
552
 
 
 
 
553
  def gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
 
554
  progress = gr.Progress()
555
  watermark_path = watermark.name if watermark else None
556
+
557
+ # Check input_files, is it single image, list image, or zip/rar
558
  if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
559
+ return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
560
  elif isinstance(input_files, list):
561
  return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
562
  else:
563
  return process_images(input_files.name, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
564
 
565
  def show_color_picker(bg_choice):
566
+ if bg_choice == 'custom':
567
+ return gr.update(visible=True)
568
+ return gr.update(visible=False)
569
 
570
  def update_compare(evt: gr.SelectData):
 
571
  if isinstance(evt.value, dict) and 'caption' in evt.value:
572
+ input_path = evt.value['caption']
573
  output_path = evt.value['image']['path']
574
+ input_path = input_path.split("Input: ")[-1]
575
  # Open the original and processed images
576
  original_img = Image.open(input_path)
577
  processed_img = Image.open(output_path)
 
580
  original_ratio = f"{original_img.width}x{original_img.height}"
581
  processed_ratio = f"{processed_img.width}x{processed_img.height}"
582
 
583
+ return gr.update(value=input_path), gr.update(value=output_path), gr.update(value=original_ratio), gr.update(value=processed_ratio)
 
 
 
 
584
  else:
585
+ print("No caption found in selection")
586
+ return gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
587
 
588
  def process(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
589
+ _, processed_images, zip_path, time_taken = gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers)
590
+ processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images]
591
+ return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds"
592
+
593
+ def add_twibbon(image_path, twibbon_path, output_path):
594
+ # Open the original image and the twibbon
595
+ image = Image.open(image_path)
596
+ twibbon = Image.open(twibbon_path)
597
+
598
+ # Get the sizes of both images
599
+ image_width, image_height = image.size
600
+ twibbon_width, twibbon_height = twibbon.size
601
+
602
+ # Resize the original image to fit inside the twibbon (optional: resize by aspect ratio)
603
+ aspect_ratio = image_width / image_height
604
+ if twibbon_width / twibbon_height > aspect_ratio:
605
+ new_width = twibbon_width
606
+ new_height = int(new_width / aspect_ratio)
607
+ else:
608
+ new_height = twibbon_height
609
+ new_width = int(new_height * aspect_ratio)
610
+
611
+ image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
612
+
613
+ # Center the image within the twibbon
614
+ x_offset = (twibbon_width - new_width) // 2
615
+ y_offset = (twibbon_height - new_height) // 2
616
+ combined_image = Image.new('RGBA', (twibbon_width, twibbon_height))
617
+ combined_image.paste(image, (x_offset, y_offset))
618
+ combined_image.paste(twibbon, (0, 0), mask=twibbon) # Twibbon is pasted over the image
619
+
620
+ # Save the result
621
+ combined_image.save(output_path)
622
+ return combined_image
623
+
624
+ def process_twibbon(image, twibbon):
625
+ output_path = "output_image.png" # Output sementara
626
+ combined_image = add_twibbon(image.name, twibbon.name, output_path)
627
+ return combined_image
628
+
629
+ def remove_background(image_path, method="none"):
630
+ image = Image.open(image_path)
631
+
632
+ if method == "none":
633
+ return image # Return the original image without any background removal
634
+ elif method == "rembg":
635
+ image = remove_background_rembg(image_path)
636
+ elif method == "bria":
637
+ image = remove_background_bria(image_path)
638
+
639
+ return image # Default return in case no valid method is chosen
640
 
641
  with gr.Blocks(theme="NoCrypt/[email protected]") as iface:
642
  gr.Markdown("# 🎨 Creative Image Suite: Generate, Modify, and Enhance Your Visuals")
 
708
  num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=5)
709
 
710
  with gr.Row():
711
+ bg_method = gr.Radio(choices=["bria", "rembg", None], label="Background Removal Method", value="bria")
712
  bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Background Choice", value="white")
713
  custom_color = gr.ColorPicker(label="Custom Background Color", value="#ffffff", visible=False)
714