|
import os |
|
import zipfile |
|
import shutil |
|
import time |
|
from PIL import Image, ImageDraw |
|
import io |
|
from rembg import remove |
|
import gradio as gr |
|
from concurrent.futures import ThreadPoolExecutor |
|
from diffusers import StableDiffusionPipeline |
|
from transformers import pipeline |
|
import numpy as np |
|
import json |
|
import torch |
|
import logging |
|
|
|
|
|
def load_stable_diffusion_model(): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float32).to(device) |
|
return pipe |
|
|
|
|
|
sd_model = load_stable_diffusion_model() |
|
|
|
def remove_background_rembg(input_path): |
|
print(f"Removing background using rembg for image: {input_path}") |
|
with open(input_path, 'rb') as i: |
|
input_image = i.read() |
|
output_image = remove(input_image) |
|
img = Image.open(io.BytesIO(output_image)).convert("RGBA") |
|
return img |
|
|
|
def remove_background_bria(input_path): |
|
"""Remove background using the Bria model.""" |
|
print("Removing background using Bria for the image.") |
|
|
|
|
|
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True) |
|
|
|
|
|
input_image = Image.open(input_path).convert("RGBA") |
|
|
|
|
|
pillow_mask = pipe(input_image, return_mask=True) |
|
print("Mask obtained:", pillow_mask) |
|
|
|
|
|
output_image = Image.new("RGBA", input_image.size) |
|
|
|
|
|
for x in range(input_image.width): |
|
for y in range(input_image.height): |
|
|
|
if pillow_mask.getpixel((x, y)) > 0: |
|
output_image.putpixel((x, y), input_image.getpixel((x, y))) |
|
else: |
|
output_image.putpixel((x, y), (0, 0, 0, 0)) |
|
|
|
return output_image |
|
|
|
|
|
def text_to_image(prompt): |
|
os.makedirs("generated_images", exist_ok=True) |
|
image = sd_model(prompt).images[0] |
|
|
|
image_path = f"generated_images/{prompt.replace(' ', '_')}.png" |
|
image.save(image_path) |
|
return image, image_path |
|
|
|
|
|
def text_image_to_image(input_image, prompt): |
|
os.makedirs("generated_images", exist_ok=True) |
|
|
|
if not isinstance(input_image, Image.Image): |
|
input_image = Image.open(input_image) |
|
|
|
modified_image = sd_model(prompt, init_image=input_image, strength=0.75).images[0] |
|
|
|
image_path = f"generated_images/{prompt.replace(' ', '_')}_modified.png" |
|
modified_image.save(image_path) |
|
return modified_image, image_path |
|
|
|
def get_bounding_box_with_threshold(image, threshold): |
|
|
|
img_array = np.array(image) |
|
|
|
|
|
alpha = img_array[:, :, 3] |
|
|
|
|
|
rows = np.any(alpha > threshold, axis=1) |
|
cols = np.any(alpha > threshold, axis=0) |
|
|
|
|
|
if np.any(rows) and np.any(cols): |
|
top, bottom = np.where(rows)[0][[0, -1]] |
|
left, right = np.where(cols)[0][[0, -1]] |
|
return (left, top, right, bottom) |
|
else: |
|
return None |
|
|
|
def position_logic(image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left, use_threshold=True): |
|
"""Position and resize an image based on cropping and padding requirements.""" |
|
image = Image.open(image_path).convert("RGBA") |
|
|
|
|
|
bbox = get_bounding_box_with_threshold(image, threshold=10) if use_threshold else image.getbbox() |
|
log = [] |
|
|
|
if bbox: |
|
width, height = image.size |
|
cropped_sides = [] |
|
tolerance = 30 |
|
|
|
|
|
for edge in ['top', 'bottom', 'left', 'right']: |
|
if edge == 'top' and any(image.getpixel((x, 0))[3] > tolerance for x in range(width)): |
|
cropped_sides.append(edge) |
|
elif edge == 'bottom' and any(image.getpixel((x, height - 1))[3] > tolerance for x in range(width)): |
|
cropped_sides.append(edge) |
|
elif edge == 'left' and any(image.getpixel((0, y))[3] > tolerance for y in range(height)): |
|
cropped_sides.append(edge) |
|
elif edge == 'right' and any(image.getpixel((width - 1, y))[3] > tolerance for y in range(height)): |
|
cropped_sides.append(edge) |
|
|
|
|
|
info_message = f"Info for {os.path.basename(image_path)}: The following sides of the image may contain cropped objects: {', '.join(cropped_sides) if cropped_sides else 'none'}" |
|
print(info_message) |
|
log.append({"info": info_message}) |
|
|
|
|
|
image = image.crop(bbox) |
|
log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]}) |
|
|
|
|
|
target_width, target_height = canvas_size |
|
aspect_ratio = image.width / image.height |
|
|
|
|
|
if len(cropped_sides) == 4: |
|
|
|
if aspect_ratio > 1: |
|
new_height = target_height |
|
new_width = int(new_height * aspect_ratio) |
|
left = (new_width - target_width) // 2 |
|
image = image.resize((new_width, new_height), Image.LANCZOS).crop((left, 0, left + target_width, target_height)) |
|
else: |
|
new_width = target_width |
|
new_height = int(new_width / aspect_ratio) |
|
top = (new_height - target_height) // 2 |
|
image = image.resize((new_width, new_height), Image.LANCZOS).crop((0, top, target_width, top + target_height)) |
|
log.append({"action": "center_crop_resize", "new_size": f"{target_width}x{target_height}"}) |
|
x, y = 0, 0 |
|
elif not cropped_sides: |
|
|
|
new_height = target_height - padding_top - padding_bottom |
|
new_width = int(new_height * aspect_ratio) |
|
if new_width > target_width - padding_left - padding_right: |
|
new_width = target_width - padding_left - padding_right |
|
new_height = int(new_width / aspect_ratio) |
|
|
|
image = image.resize((new_width, new_height), Image.LANCZOS) |
|
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)}) |
|
x = (target_width - new_width) // 2 |
|
y = target_height - new_height - padding_bottom |
|
else: |
|
|
|
new_width, new_height = target_width, target_height |
|
for side in cropped_sides: |
|
if side in ["top", "bottom"]: |
|
new_height = target_height - (padding_top + padding_bottom) |
|
if side in ["left", "right"]: |
|
new_width = target_width - (padding_left + padding_right) |
|
|
|
image = image.resize((new_width, new_height), Image.LANCZOS) |
|
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)}) |
|
|
|
|
|
x = (target_width - new_width) // 2 if "left" not in cropped_sides and "right" not in cropped_sides else (0 if "left" in cropped_sides else target_width - new_width) |
|
y = (0 if "top" in cropped_sides else target_height - new_height) |
|
|
|
log.append({"action": "position", "x": str(x), "y": str(y)}) |
|
|
|
return log, image, x, y |
|
|
|
|
|
CANVAS_SIZES = { |
|
'Rox': ((1080, 1080), (112, 125, 116, 125)), |
|
'Columbia': ((730, 610), (30, 105, 35, 105)), |
|
'Zalora': ((763, 1100), (50, 50, 200, 50)) |
|
} |
|
|
|
def process_single_image(image_path, output_folder, bg_method, canvas_size_name, output_format, bg_choice, custom_color, watermark_path=None): |
|
"""Processes a single image by removing its background and applying various transformations. |
|
|
|
Args: |
|
image_path (str): Path to the input image. |
|
output_folder (str): Path to the output folder. |
|
bg_method (str): Background removal method ('rembg' or 'bria'). |
|
canvas_size_name (str): Name of the canvas size. |
|
output_format (str): Desired output format ('JPG' or 'PNG'). |
|
bg_choice (str): Background choice ('white', 'custom', or 'transparent'). |
|
custom_color (tuple): Custom background color as an RGBA tuple. |
|
watermark_path (str, optional): Path to a watermark image. |
|
|
|
Returns: |
|
tuple: A tuple containing the output path and log of actions performed. |
|
""" |
|
try: |
|
canvas_size, (padding_top, padding_right, padding_bottom, padding_left) = CANVAS_SIZES[canvas_size_name] |
|
filename = os.path.basename(image_path) |
|
logging.info(f"Processing image: {filename}") |
|
|
|
|
|
if bg_method == 'rembg': |
|
image_with_no_bg = remove_background_rembg(image_path) |
|
elif bg_method == 'bria': |
|
image_with_no_bg = remove_background_bria(image_path) |
|
else: |
|
raise ValueError("Invalid background method specified.") |
|
|
|
|
|
temp_image_path = os.path.join(output_folder, f"temp_{filename}") |
|
image_with_no_bg.save(temp_image_path, format='PNG') |
|
|
|
log, new_image, x, y = position_logic(temp_image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left) |
|
|
|
|
|
if bg_choice == 'white': |
|
canvas = Image.new("RGBA", canvas_size, "WHITE") |
|
elif bg_choice == 'custom': |
|
canvas = Image.new("RGBA", canvas_size, custom_color) |
|
else: |
|
canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0)) |
|
|
|
|
|
canvas.paste(new_image, (x, y), new_image) |
|
log.append({"action": "paste", "position": [str(x), str(y)]}) |
|
|
|
|
|
if watermark_path: |
|
watermark = Image.open(watermark_path).convert("RGBA") |
|
|
|
watermark_width, watermark_height = watermark.size |
|
canvas_width, canvas_height = canvas.size |
|
|
|
x = (canvas_width - watermark_width) // 2 |
|
y = (canvas_height - watermark_height) // 2 |
|
|
|
canvas.paste(watermark, (x, y), watermark) |
|
log.append({"action": "add_watermark"}) |
|
|
|
|
|
output_ext = 'jpg' if output_format == 'JPG' else 'png' |
|
output_filename = f"{os.path.splitext(filename)[0]}.{output_ext}" |
|
output_path = os.path.join(output_folder, output_filename) |
|
|
|
|
|
if output_format == 'JPG': |
|
canvas.convert('RGB').save(output_path, format='JPEG') |
|
else: |
|
canvas.save(output_path, format='PNG') |
|
|
|
|
|
os.remove(temp_image_path) |
|
|
|
logging.info(f"Processed image path: {output_path}") |
|
return [(output_path, image_path)], log |
|
|
|
except Exception as e: |
|
logging.error(f"Error processing {filename}: {e}") |
|
return None, None |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_size='Rox', output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()): |
|
"""Processes images by removing backgrounds and applying various transformations. |
|
|
|
Args: |
|
input_files (str or list): Path to a ZIP file or a list of image paths. |
|
bg_method (str): Background removal method ('rembg' or 'bria'). |
|
watermark_path (str, optional): Path to a watermark image. |
|
canvas_size (str): Name of the canvas size. |
|
output_format (str): Desired output format ('PNG' or 'JPG'). |
|
bg_choice (str): Background choice ('transparent', 'white', or 'custom'). |
|
custom_color (str): Custom background color in hex format. |
|
num_workers (int): Number of parallel workers for processing. |
|
progress (gr.Progress): Progress tracking interface. |
|
|
|
Returns: |
|
tuple: A tuple containing original images, processed images, output zip path, and total processing time. |
|
""" |
|
start_time = time.time() |
|
|
|
output_folder = "processed_images" |
|
if os.path.exists(output_folder): |
|
shutil.rmtree(output_folder) |
|
os.makedirs(output_folder) |
|
|
|
processed_images = [] |
|
original_images = [] |
|
all_logs = [] |
|
|
|
image_files = [] |
|
|
|
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')): |
|
|
|
input_folder = "temp_input" |
|
if os.path.exists(input_folder): |
|
shutil.rmtree(input_folder) |
|
os.makedirs(input_folder) |
|
|
|
try: |
|
with zipfile.ZipFile(input_files, 'r') as zip_ref: |
|
zip_ref.extractall(input_folder) |
|
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))] |
|
except zipfile.BadZipFile as e: |
|
logging.error(f"Error extracting zip file: {e}") |
|
return [], None, 0 |
|
elif isinstance(input_files, list): |
|
|
|
image_files = input_files |
|
else: |
|
|
|
image_files = [input_files] |
|
|
|
total_images = len(image_files) |
|
logging.info(f"Total images to process: {total_images}") |
|
|
|
avg_processing_time = 0 |
|
with ThreadPoolExecutor(max_workers=num_workers) as executor: |
|
future_to_image = {executor.submit(process_single_image, image_path, output_folder, bg_method, canvas_size, output_format, bg_choice, custom_color, watermark_path): image_path for image_path in image_files} |
|
for idx, future in enumerate(future_to_image): |
|
try: |
|
start_time_image = time.time() |
|
result, log = future.result() |
|
end_time_image = time.time() |
|
image_processing_time = end_time_image - start_time_image |
|
|
|
|
|
avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1) |
|
|
|
if result: |
|
processed_images.extend(result) |
|
original_images.append(future_to_image[future]) |
|
all_logs.append({os.path.basename(future_to_image[future]): log}) |
|
|
|
|
|
remaining_images = total_images - (idx + 1) |
|
estimated_remaining_time = remaining_images * avg_processing_time |
|
|
|
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds") |
|
except Exception as e: |
|
logging.error(f"Error processing image {future_to_image[future]}: {e}") |
|
|
|
output_zip_path = "processed_images.zip" |
|
with zipfile.ZipFile(output_zip_path, 'w') as zipf: |
|
for file, _ in processed_images: |
|
zipf.write(file, os.path.basename(file)) |
|
|
|
|
|
with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file: |
|
json.dump(all_logs, log_file, indent=4) |
|
logging.info("Comprehensive log saved to %s", os.path.join(output_folder, 'process_log.json')) |
|
|
|
end_time = time.time() |
|
processing_time = end_time - start_time |
|
logging.info(f"Processing time: {processing_time} seconds") |
|
|
|
return original_images, processed_images, output_zip_path, processing_time |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
def gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers): |
|
"""Handles input files and processes them accordingly.""" |
|
progress = gr.Progress() |
|
watermark_path = watermark.name if watermark else None |
|
|
|
|
|
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')): |
|
return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress) |
|
elif isinstance(input_files, list): |
|
return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress) |
|
else: |
|
return process_images(input_files.name, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress) |
|
|
|
def show_color_picker(bg_choice): |
|
"""Shows the color picker if 'custom' background is selected.""" |
|
return gr.update(visible=(bg_choice == 'custom')) |
|
|
|
def update_compare(evt: gr.SelectData): |
|
"""Updates the displayed images and their ratios when a processed image is selected.""" |
|
if isinstance(evt.value, dict) and 'caption' in evt.value: |
|
input_path = evt.value['caption'].split("Input: ")[-1] |
|
output_path = evt.value['image']['path'] |
|
|
|
|
|
original_img = Image.open(input_path) |
|
processed_img = Image.open(output_path) |
|
|
|
|
|
original_ratio = f"{original_img.width}x{original_img.height}" |
|
processed_ratio = f"{processed_img.width}x{processed_img.height}" |
|
|
|
return (gr.update(value=input_path), |
|
gr.update(value=output_path), |
|
gr.update(value=original_ratio), |
|
gr.update(value=processed_ratio) |
|
) |
|
else: |
|
logging.warning("No caption found in selection") |
|
return (gr.update(value=None),) * 4 |
|
|
|
def process(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers): |
|
"""Processes the images and returns the results.""" |
|
try: |
|
_, processed_images, zip_path, time_taken = gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers) |
|
processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images] |
|
return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds" |
|
except Exception as e: |
|
logging.error(f"Error in processing images: {e}") |
|
return [], None, "Error during processing" |
|
|
|
with gr.Blocks(theme="NoCrypt/[email protected]") as iface: |
|
gr.Markdown("# 🎨 Creative Image Suite: Generate, Modify, and Enhance Your Visuals") |
|
gr.Markdown(""" |
|
**Unlock your creativity with our comprehensive image processing tool! This suite offers three powerful features:** |
|
|
|
1. **✏️ Text to Image**: Transform your ideas into stunning visuals by simply entering a descriptive text prompt. Watch your imagination come to life! |
|
|
|
2. **🖼️ Image to Image**: Enhance existing images by providing a text description of the modifications you want. Upload any image and specify the changes as you wish to create a unique masterpiece. |
|
|
|
3. **🖌️ Image Background Removal and Resizing**: Effortlessly remove backgrounds from images, resize them, and even add watermarks (opitonal). Upload single images or zip files, choose your desired settings, and let our tool process everything seamlessly. |
|
""") |
|
|
|
|
|
gr.Markdown("## Text to Image Feature") |
|
gr.Markdown(""" |
|
**Example Prompts:** |
|
- *A serene mountain landscape at sunset.* |
|
- *A futuristic city skyline with flying cars.* |
|
- *A whimsical forest filled with colorful mushrooms and fairies.* |
|
- *A close-up of a vibrant butterfly resting on a flower.* |
|
|
|
This feature allows you to create a new image based on a text description. Simply enter your idea in a sentence, and the system will generate an image that matches it. |
|
""") |
|
gr.Markdown("### ⚠️ Note:") |
|
gr.Markdown("Processing may take a while due to the free CPU resources on Hugging Face Spaces. Please be patient!") |
|
|
|
with gr.Row(): |
|
prompt_input = gr.Textbox(label="Enter your prompt for image generation:") |
|
generate_button = gr.Button("Generate Image") |
|
output_image = gr.Image(label="Generated Image") |
|
download_button = gr.File(label="Download Generated Image", type="filepath") |
|
|
|
generate_button.click(text_to_image, inputs=prompt_input, outputs=[output_image, download_button]) |
|
|
|
|
|
gr.Markdown("## Image to Image Feature") |
|
gr.Markdown(""" |
|
**Example Prompts:** |
|
- *Change the sky to a starry night with a full moon.* |
|
- *Add a rainbow across the horizon in this beach scene.* |
|
- *Make the flowers in the garden bloom in shades of blue.* |
|
- *Transform the cat's fur to a bright orange color.* |
|
|
|
This feature lets you modify an existing image by adding a text description. Upload an image, specify what you want to change, and the system will alter the image accordingly. |
|
""") |
|
gr.Markdown("### ⚠️ Note:") |
|
gr.Markdown("Processing may take a while due to the free CPU resources on Hugging Face Spaces. Please be patient!") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Upload Image for Modification", type="pil") |
|
prompt_modification = gr.Textbox(label="Enter your prompt for modification:") |
|
modify_button = gr.Button("Modify Image") |
|
modified_output_image = gr.Image(label="Modified Image") |
|
download_modified_button = gr.File(label="Download Modified Image", type="filepath") |
|
|
|
modify_button.click(text_image_to_image, inputs=[input_image, prompt_modification], outputs=[modified_output_image, download_modified_button]) |
|
|
|
gr.Markdown("## Image Background Removal and Resizing with Optional Watermark") |
|
gr.Markdown("Choose to upload multiple images or a ZIP/RAR file, select the crop mode, optionally upload a watermark image, and choose the output format.") |
|
|
|
with gr.Row(): |
|
input_files = gr.File(label="Upload Image or ZIP/RAR file", file_types=[".zip", ".rar", "image"], interactive=True) |
|
watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"]) |
|
|
|
with gr.Row(): |
|
canvas_size = gr.Radio(choices=["Rox", "Columbia", "Zalora"], label="Canvas Size", value="Rox") |
|
output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="JPG") |
|
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=5) |
|
|
|
with gr.Row(): |
|
bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria") |
|
bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Background Choice", value="white") |
|
custom_color = gr.ColorPicker(label="Custom Background Color", value="#ffffff", visible=False) |
|
|
|
process_button = gr.Button("Process Images") |
|
|
|
with gr.Row(): |
|
gallery_processed = gr.Gallery(label="Processed Images") |
|
with gr.Row(): |
|
image_original = gr.Image(label="Original Images", interactive=False) |
|
image_processed = gr.Image(label="Processed Images", interactive=False) |
|
with gr.Row(): |
|
original_ratio = gr.Textbox(label="Original Ratio") |
|
processed_ratio = gr.Textbox(label="Processed Ratio") |
|
with gr.Row(): |
|
output_zip = gr.File(label="Download Processed Images as ZIP") |
|
processing_time = gr.Textbox(label="Processing Time (seconds)") |
|
|
|
bg_choice.change(show_color_picker, inputs=bg_choice, outputs=custom_color) |
|
process_button.click(process, inputs=[input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers], outputs=[gallery_processed, output_zip, processing_time]) |
|
gallery_processed.select(update_compare, outputs=[image_original, image_processed, original_ratio, processed_ratio]) |
|
|
|
iface.launch(share=True) |