File size: 23,145 Bytes
622f846 f23ce99 622f846 f23ce99 622f846 f23ce99 dc7d4c6 f23ce99 622f846 fbc475b cd57dbe fbc475b cd57dbe fbc475b f23ce99 622f846 f23ce99 f9ea49f 22b1679 e5725c5 4ebddc7 22b1679 4ebddc7 74c44d0 4ebddc7 f23ce99 622f846 3a0a1c5 622f846 3a0a1c5 622f846 3a0a1c5 622f846 3a0a1c5 622f846 235ace7 622f846 235ace7 66bafcc 622f846 235ace7 622f846 235ace7 22b1679 235ace7 3a90bd9 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 7e07d39 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 8912dd0 f1edf7d 622f846 67d8518 22b1679 8912dd0 22b1679 8912dd0 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 22b1679 622f846 5ba039a 22b1679 3a0a1c5 22b1679 3a0a1c5 22b1679 3a0a1c5 22b1679 3a0a1c5 5ba039a dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 dc7d4c6 622f846 c4f539f 622f846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import os
import zipfile
import shutil
import time
from PIL import Image, ImageDraw
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
from diffusers import StableDiffusionPipeline
from transformers import pipeline
import numpy as np
import json
import torch
import logging
# Load Stable Diffusion Model
def load_stable_diffusion_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float32).to(device)
return pipe
# Initialize the model globally
sd_model = load_stable_diffusion_model()
def remove_background_rembg(input_path):
print(f"Removing background using rembg for image: {input_path}")
with open(input_path, 'rb') as i:
input_image = i.read()
output_image = remove(input_image)
img = Image.open(io.BytesIO(output_image)).convert("RGBA")
return img
def remove_background_bria(input_path):
"""Remove background using the Bria model."""
print("Removing background using Bria for the image.")
# Create a segmentation pipeline
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
# Load the image
input_image = Image.open(input_path).convert("RGBA")
# Get the segmentation output
pillow_mask = pipe(input_image, return_mask=True) # Outputs a pillow mask
print("Mask obtained:", pillow_mask) # Debugging output
# Create an output image based on the mask
output_image = Image.new("RGBA", input_image.size)
# Use the mask to create the output image
for x in range(input_image.width):
for y in range(input_image.height):
# Assuming mask is in a binary format where foreground is True
if pillow_mask.getpixel((x, y)) > 0: # Adjust based on actual mask values
output_image.putpixel((x, y), input_image.getpixel((x, y)))
else:
output_image.putpixel((x, y), (0, 0, 0, 0)) # Set to transparent
return output_image
# Fungsi untuk memproses gambar menggunakan prompt
def text_to_image(prompt):
os.makedirs("generated_images", exist_ok=True) # Ensure the directory exists
image = sd_model(prompt).images[0] # Generate image using the model
# Create a sanitized filename by replacing spaces with underscores
image_path = f"generated_images/{prompt.replace(' ', '_')}.png"
image.save(image_path) # Save the generated image
return image, image_path # Return the image and its path
# Function to modify an image based on a text prompt
def text_image_to_image(input_image, prompt):
os.makedirs("generated_images", exist_ok=True) # Ensure the directory exists
# Convert input image to PIL Image if necessary
if not isinstance(input_image, Image.Image):
input_image = Image.open(input_image) # Load image from path if given as string
# Generate modified image using the model with the input image and prompt
modified_image = sd_model(prompt, init_image=input_image, strength=0.75).images[0]
# Create a sanitized filename for the modified image
image_path = f"generated_images/{prompt.replace(' ', '_')}_modified.png"
modified_image.save(image_path) # Save the modified image
return modified_image, image_path # Return the modified image and its path
def get_bounding_box_with_threshold(image, threshold):
# Convert image to numpy array
img_array = np.array(image)
# Get alpha channel
alpha = img_array[:, :, 3]
# Find rows and columns where alpha > threshold
rows = np.any(alpha > threshold, axis=1)
cols = np.any(alpha > threshold, axis=0)
# Find the bounding box
if np.any(rows) and np.any(cols):
top, bottom = np.where(rows)[0][[0, -1]]
left, right = np.where(cols)[0][[0, -1]]
return (left, top, right, bottom)
else:
return None
def position_logic(image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left, use_threshold=True):
"""Position and resize an image based on cropping and padding requirements."""
image = Image.open(image_path).convert("RGBA")
# Get the bounding box of the non-blank area with threshold
bbox = get_bounding_box_with_threshold(image, threshold=10) if use_threshold else image.getbbox()
log = []
if bbox:
width, height = image.size
cropped_sides = []
tolerance = 30 # Define a constant for transparency tolerance
# Check each edge for non-transparent pixels
for edge in ['top', 'bottom', 'left', 'right']:
if edge == 'top' and any(image.getpixel((x, 0))[3] > tolerance for x in range(width)):
cropped_sides.append(edge)
elif edge == 'bottom' and any(image.getpixel((x, height - 1))[3] > tolerance for x in range(width)):
cropped_sides.append(edge)
elif edge == 'left' and any(image.getpixel((0, y))[3] > tolerance for y in range(height)):
cropped_sides.append(edge)
elif edge == 'right' and any(image.getpixel((width - 1, y))[3] > tolerance for y in range(height)):
cropped_sides.append(edge)
# Log cropping information
info_message = f"Info for {os.path.basename(image_path)}: The following sides of the image may contain cropped objects: {', '.join(cropped_sides) if cropped_sides else 'none'}"
print(info_message)
log.append({"info": info_message})
# Crop the image to the bounding box
image = image.crop(bbox)
log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]})
# Calculate new size to expand the image
target_width, target_height = canvas_size
aspect_ratio = image.width / image.height
# Handling image positioning and resizing based on cropped sides
if len(cropped_sides) == 4:
# Center crop if cropped on all sides
if aspect_ratio > 1: # Landscape
new_height = target_height
new_width = int(new_height * aspect_ratio)
left = (new_width - target_width) // 2
image = image.resize((new_width, new_height), Image.LANCZOS).crop((left, 0, left + target_width, target_height))
else: # Portrait or square
new_width = target_width
new_height = int(new_width / aspect_ratio)
top = (new_height - target_height) // 2
image = image.resize((new_width, new_height), Image.LANCZOS).crop((0, top, target_width, top + target_height))
log.append({"action": "center_crop_resize", "new_size": f"{target_width}x{target_height}"})
x, y = 0, 0
elif not cropped_sides:
# Expand from center
new_height = target_height - padding_top - padding_bottom
new_width = int(new_height * aspect_ratio)
if new_width > target_width - padding_left - padding_right:
new_width = target_width - padding_left - padding_right
new_height = int(new_width / aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
x = (target_width - new_width) // 2
y = target_height - new_height - padding_bottom
else:
# Handle specific cropped side cases
new_width, new_height = target_width, target_height # Default values for resizing
for side in cropped_sides:
if side in ["top", "bottom"]:
new_height = target_height - (padding_top + padding_bottom)
if side in ["left", "right"]:
new_width = target_width - (padding_left + padding_right)
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Determine position based on cropped sides
x = (target_width - new_width) // 2 if "left" not in cropped_sides and "right" not in cropped_sides else (0 if "left" in cropped_sides else target_width - new_width)
y = (0 if "top" in cropped_sides else target_height - new_height)
log.append({"action": "position", "x": str(x), "y": str(y)})
return log, image, x, y
# Constants for canvas sizes and paddings
CANVAS_SIZES = {
'Rox': ((1080, 1080), (112, 125, 116, 125)),
'Columbia': ((730, 610), (30, 105, 35, 105)),
'Zalora': ((763, 1100), (50, 50, 200, 50))
}
def process_single_image(image_path, output_folder, bg_method, canvas_size_name, output_format, bg_choice, custom_color, watermark_path=None):
"""Processes a single image by removing its background and applying various transformations.
Args:
image_path (str): Path to the input image.
output_folder (str): Path to the output folder.
bg_method (str): Background removal method ('rembg' or 'bria').
canvas_size_name (str): Name of the canvas size.
output_format (str): Desired output format ('JPG' or 'PNG').
bg_choice (str): Background choice ('white', 'custom', or 'transparent').
custom_color (tuple): Custom background color as an RGBA tuple.
watermark_path (str, optional): Path to a watermark image.
Returns:
tuple: A tuple containing the output path and log of actions performed.
"""
try:
canvas_size, (padding_top, padding_right, padding_bottom, padding_left) = CANVAS_SIZES[canvas_size_name]
filename = os.path.basename(image_path)
logging.info(f"Processing image: {filename}")
# Remove background
if bg_method == 'rembg':
image_with_no_bg = remove_background_rembg(image_path)
elif bg_method == 'bria':
image_with_no_bg = remove_background_bria(image_path)
else:
raise ValueError("Invalid background method specified.")
# Temporary file for processed image
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
log, new_image, x, y = position_logic(temp_image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left)
# Create canvas based on background choice
if bg_choice == 'white':
canvas = Image.new("RGBA", canvas_size, "WHITE")
elif bg_choice == 'custom':
canvas = Image.new("RGBA", canvas_size, custom_color)
else: # transparent
canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0))
# Paste the resized image onto the canvas
canvas.paste(new_image, (x, y), new_image)
log.append({"action": "paste", "position": [str(x), str(y)]})
# Add watermark if applicable
if watermark_path:
watermark = Image.open(watermark_path).convert("RGBA")
# Hitung posisi untuk menempatkan watermark di tengah
watermark_width, watermark_height = watermark.size
canvas_width, canvas_height = canvas.size
# Hitung posisi (x, y) untuk watermark
x = (canvas_width - watermark_width) // 2
y = (canvas_height - watermark_height) // 2
# Tempelkan watermark
canvas.paste(watermark, (x, y), watermark)
log.append({"action": "add_watermark"})
# Determine output format
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_filename = f"{os.path.splitext(filename)[0]}.{output_ext}"
output_path = os.path.join(output_folder, output_filename)
# Save the canvas in the desired format
if output_format == 'JPG':
canvas.convert('RGB').save(output_path, format='JPEG')
else:
canvas.save(output_path, format='PNG')
# Clean up temporary file
os.remove(temp_image_path)
logging.info(f"Processed image path: {output_path}")
return [(output_path, image_path)], log
except Exception as e:
logging.error(f"Error processing {filename}: {e}")
return None, None
# Set up logging
logging.basicConfig(level=logging.INFO)
def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_size='Rox', output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
"""Processes images by removing backgrounds and applying various transformations.
Args:
input_files (str or list): Path to a ZIP file or a list of image paths.
bg_method (str): Background removal method ('rembg' or 'bria').
watermark_path (str, optional): Path to a watermark image.
canvas_size (str): Name of the canvas size.
output_format (str): Desired output format ('PNG' or 'JPG').
bg_choice (str): Background choice ('transparent', 'white', or 'custom').
custom_color (str): Custom background color in hex format.
num_workers (int): Number of parallel workers for processing.
progress (gr.Progress): Progress tracking interface.
Returns:
tuple: A tuple containing original images, processed images, output zip path, and total processing time.
"""
start_time = time.time()
output_folder = "processed_images"
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(output_folder)
processed_images = []
original_images = []
all_logs = []
image_files = []
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
# Handle zip file
input_folder = "temp_input"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
os.makedirs(input_folder)
try:
with zipfile.ZipFile(input_files, 'r') as zip_ref:
zip_ref.extractall(input_folder)
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
except zipfile.BadZipFile as e:
logging.error(f"Error extracting zip file: {e}")
return [], None, 0
elif isinstance(input_files, list):
# Handle multiple files
image_files = input_files
else:
# Handle single file
image_files = [input_files]
total_images = len(image_files)
logging.info(f"Total images to process: {total_images}")
avg_processing_time = 0
with ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_image = {executor.submit(process_single_image, image_path, output_folder, bg_method, canvas_size, output_format, bg_choice, custom_color, watermark_path): image_path for image_path in image_files}
for idx, future in enumerate(future_to_image):
try:
start_time_image = time.time()
result, log = future.result()
end_time_image = time.time()
image_processing_time = end_time_image - start_time_image
# Update average processing time
avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1)
if result:
processed_images.extend(result)
original_images.append(future_to_image[future])
all_logs.append({os.path.basename(future_to_image[future]): log})
# Estimate remaining time
remaining_images = total_images - (idx + 1)
estimated_remaining_time = remaining_images * avg_processing_time
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds")
except Exception as e:
logging.error(f"Error processing image {future_to_image[future]}: {e}")
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file, _ in processed_images:
zipf.write(file, os.path.basename(file))
# Write the comprehensive log for all images
with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file:
json.dump(all_logs, log_file, indent=4)
logging.info("Comprehensive log saved to %s", os.path.join(output_folder, 'process_log.json'))
end_time = time.time()
processing_time = end_time - start_time
logging.info(f"Processing time: {processing_time} seconds")
return original_images, processed_images, output_zip_path, processing_time
# Set up logging
logging.basicConfig(level=logging.INFO)
def gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
"""Handles input files and processes them accordingly."""
progress = gr.Progress()
watermark_path = watermark.name if watermark else None
# Check the type of input_files and call the process_images function
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
elif isinstance(input_files, list):
return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
else:
return process_images(input_files.name, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
def show_color_picker(bg_choice):
"""Shows the color picker if 'custom' background is selected."""
return gr.update(visible=(bg_choice == 'custom'))
def update_compare(evt: gr.SelectData):
"""Updates the displayed images and their ratios when a processed image is selected."""
if isinstance(evt.value, dict) and 'caption' in evt.value:
input_path = evt.value['caption'].split("Input: ")[-1]
output_path = evt.value['image']['path']
# Open the original and processed images
original_img = Image.open(input_path)
processed_img = Image.open(output_path)
# Calculate the aspect ratios
original_ratio = f"{original_img.width}x{original_img.height}"
processed_ratio = f"{processed_img.width}x{processed_img.height}"
return (gr.update(value=input_path),
gr.update(value=output_path),
gr.update(value=original_ratio),
gr.update(value=processed_ratio)
)
else:
logging.warning("No caption found in selection")
return (gr.update(value=None),) * 4
def process(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
"""Processes the images and returns the results."""
try:
_, processed_images, zip_path, time_taken = gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers)
processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images]
return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds"
except Exception as e:
logging.error(f"Error in processing images: {e}")
return [], None, "Error during processing"
with gr.Blocks(theme="NoCrypt/[email protected]") as iface:
gr.Markdown("# Image Background Removal and Resizing with Optional Watermark")
gr.Markdown("Choose to upload multiple images or a ZIP/RAR file, select the crop mode, optionally upload a watermark image, and choose the output format.")
# Fitur Text to Image
gr.Markdown("# Text to Image Feature")
with gr.Row():
prompt_input = gr.Textbox(label="Enter your prompt for image generation:")
generate_button = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
download_button = gr.File(label="Download Generated Image", type="filepath")
generate_button.click(text_to_image, inputs=prompt_input, outputs=[output_image, download_button])
# Fitur Text Image to Image
gr.Markdown("# Text Image to Image Feature")
with gr.Row():
input_image = gr.Image(label="Upload Image for Modification", type="pil")
prompt_modification = gr.Textbox(label="Enter your prompt for modification:")
modify_button = gr.Button("Modify Image")
modified_output_image = gr.Image(label="Modified Image")
download_modified_button = gr.File(label="Download Modified Image", type="filepath")
modify_button.click(text_image_to_image, inputs=[input_image, prompt_modification], outputs=[modified_output_image, download_modified_button])
with gr.Row():
input_files = gr.File(label="Upload Image or ZIP/RAR file", file_types=[".zip", ".rar", "image"], interactive=True)
watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"])
with gr.Row():
canvas_size = gr.Radio(choices=["Rox", "Columbia", "Zalora"], label="Canvas Size", value="Rox")
output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="JPG")
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=5)
with gr.Row():
bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria")
bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Background Choice", value="white")
custom_color = gr.ColorPicker(label="Custom Background Color", value="#ffffff", visible=False)
process_button = gr.Button("Process Images")
with gr.Row():
gallery_processed = gr.Gallery(label="Processed Images")
with gr.Row():
image_original = gr.Image(label="Original Images", interactive=False)
image_processed = gr.Image(label="Processed Images", interactive=False)
with gr.Row():
original_ratio = gr.Textbox(label="Original Ratio")
processed_ratio = gr.Textbox(label="Processed Ratio")
with gr.Row():
output_zip = gr.File(label="Download Processed Images as ZIP")
processing_time = gr.Textbox(label="Processing Time (seconds)")
bg_choice.change(show_color_picker, inputs=bg_choice, outputs=custom_color)
process_button.click(process, inputs=[input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers], outputs=[gallery_processed, output_zip, processing_time])
gallery_processed.select(update_compare, outputs=[image_original, image_processed, original_ratio, processed_ratio])
iface.launch(share=True) |