Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Muennighoff
commited on
Commit
·
ec6b925
1
Parent(s):
78db81b
Updates
Browse files
app.py
CHANGED
@@ -7,14 +7,6 @@ from huggingface_hub.repocard import metadata_load
|
|
7 |
|
8 |
path = f"https://huggingface.co/api/spaces"
|
9 |
|
10 |
-
|
11 |
-
#api = HfApi()
|
12 |
-
#models = api.list_models(filter="mteb")
|
13 |
-
#readme_path = hf_hub_download(models[0].modelId, filename="README.md")
|
14 |
-
#meta = metadata_load(readme_path)
|
15 |
-
#list(filter(lambda x: x["task"]["type"] == "Retrieval", meta["model-index"][0]["results"]))
|
16 |
-
|
17 |
-
|
18 |
def get_blocks_party_spaces():
|
19 |
r = requests.get(path)
|
20 |
d = r.json()
|
@@ -28,7 +20,14 @@ def get_blocks_party_spaces():
|
|
28 |
df = df.sort_values(by=['likes'],ascending=False)
|
29 |
return df
|
30 |
|
31 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
api = HfApi()
|
33 |
models = api.list_models(filter="mteb")
|
34 |
df_list = []
|
@@ -37,11 +36,14 @@ def get_clustering(task="Clustering", metric="v_measure"):
|
|
37 |
meta = metadata_load(readme_path)
|
38 |
out = list(
|
39 |
map(
|
40 |
-
lambda x: {x["dataset"]["name"]: list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"]},
|
41 |
filter(lambda x: x["task"]["type"] == task, meta["model-index"][0]["results"])
|
42 |
)
|
43 |
)
|
44 |
out = {k: v for d in out for k, v in d.items()}
|
|
|
|
|
|
|
45 |
out["Model"] = model.modelId
|
46 |
df_list.append(out)
|
47 |
df = pd.DataFrame(df_list)
|
@@ -67,7 +69,9 @@ with block:
|
|
67 |
data = gr.components.Dataframe(type="pandas")
|
68 |
with gr.Row():
|
69 |
data_run = gr.Button("Refresh")
|
70 |
-
|
|
|
|
|
71 |
with gr.TabItem("Blocks Party Leaderboard2"):
|
72 |
with gr.Row():
|
73 |
data = gr.components.Dataframe(type="pandas")
|
|
|
7 |
|
8 |
path = f"https://huggingface.co/api/spaces"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def get_blocks_party_spaces():
|
11 |
r = requests.get(path)
|
12 |
d = r.json()
|
|
|
20 |
df = df.sort_values(by=['likes'],ascending=False)
|
21 |
return df
|
22 |
|
23 |
+
def make_clickable_model(model_name):
|
24 |
+
# remove user from model name
|
25 |
+
model_name_show = ' '.join(model_name.split('/')[1:])
|
26 |
+
|
27 |
+
link = "https://huggingface.co/" + model_name
|
28 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
29 |
+
|
30 |
+
def get_mteb_data(task="Clustering", metric="v_measure"):
|
31 |
api = HfApi()
|
32 |
models = api.list_models(filter="mteb")
|
33 |
df_list = []
|
|
|
36 |
meta = metadata_load(readme_path)
|
37 |
out = list(
|
38 |
map(
|
39 |
+
lambda x: {x["dataset"]["name"].replace("MTEB ", ""): round(list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2)},
|
40 |
filter(lambda x: x["task"]["type"] == task, meta["model-index"][0]["results"])
|
41 |
)
|
42 |
)
|
43 |
out = {k: v for d in out for k, v in d.items()}
|
44 |
+
# Does not work https://github.com/gradio-app/gradio/issues/2375
|
45 |
+
# Turning it into HTML will make the formatting ugly
|
46 |
+
# make_clickable_model(model.modelId)
|
47 |
out["Model"] = model.modelId
|
48 |
df_list.append(out)
|
49 |
df = pd.DataFrame(df_list)
|
|
|
69 |
data = gr.components.Dataframe(type="pandas")
|
70 |
with gr.Row():
|
71 |
data_run = gr.Button("Refresh")
|
72 |
+
task = gr.Variable(value="Clustering")
|
73 |
+
metric = gr.Variable(value="v_measure")
|
74 |
+
data_run.click(get_mteb_data, inputs=[task, metric], outputs=data)
|
75 |
with gr.TabItem("Blocks Party Leaderboard2"):
|
76 |
with gr.Row():
|
77 |
data = gr.components.Dataframe(type="pandas")
|