Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from functools import reduce | |
import re | |
import gradio as gr | |
import pandas as pd | |
from envs import REPO_ID | |
from refresh import BOARDS_CONFIG, TASKS, TASKS_CONFIG, TASK_DESCRIPTIONS, PRETTY_NAMES, load_results, make_clickable_model | |
from refresh import PROPRIETARY_MODELS, SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS, CROSS_ENCODERS, BI_ENCODERS, EXTERNAL_MODEL_TO_LINK | |
PROPRIETARY_MODELS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in PROPRIETARY_MODELS | |
} | |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS | |
} | |
CROSS_ENCODERS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in CROSS_ENCODERS | |
} | |
BI_ENCODERS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in BI_ENCODERS | |
} | |
def make_datasets_clickable(df): | |
"""Does not work""" | |
if "BornholmBitextMining" in df.columns: | |
link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel" | |
df = df.rename( | |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',}) | |
return df | |
# 1. Force headers to wrap | |
# 2. Force model column (maximum) width | |
# 3. Prevent model column from overflowing, scroll instead | |
# 4. Prevent checkbox groups from taking up too much space | |
css = """ | |
table > thead { | |
white-space: normal | |
} | |
table { | |
--cell-width-1: 250px | |
} | |
table > tbody > tr > td:nth-child(2) > div { | |
overflow-x: auto | |
} | |
.filter-checkbox-group { | |
max-width: max-content; | |
} | |
""" | |
""" | |
Each inner tab can have the following keys: | |
- language: The language of the leaderboard | |
- language_long: [optional] The long form of the language | |
- description: The description of the leaderboard | |
- credits: [optional] The credits for the leaderboard | |
- data: The data for the leaderboard | |
""" | |
# No more refreshing manually, happens daily | |
# def get_refresh_function(task_category, task_list): | |
# def _refresh(): | |
# data_task_category = get_mteb_data(tasks=[task_category], datasets=task_list) | |
# data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True) | |
# return data_task_category | |
# return _refresh | |
# def get_refresh_overall_function(tasks): | |
# return lambda: get_mteb_average(tasks)[0] | |
# load in the pre-calculated `all_data_tasks` and `boards_data` | |
print(f"Loading pre-calculated data....") | |
all_data_tasks = load_results("all_data_tasks") | |
boards_data = load_results("boards_data") | |
#### Caclulate Metadata | |
# Exact, add all non-nan integer values for every dataset | |
NUM_SCORES = 0 | |
DATASETS = [] | |
MODELS = [] | |
# LANGUAGES = [] | |
for d in all_data_tasks: | |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum() | |
cols_to_ignore = 4 if "Average" in d.columns else 3 | |
# Count number of scores including only non-nan floats & excluding the rank column | |
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum() | |
# Exclude rank & model name column (first two); Do not count different language versions as different datasets | |
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]] | |
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]] | |
MODELS += d["Model"].tolist() | |
NUM_DATASETS = len(set(DATASETS)) | |
# NUM_LANGUAGES = len(set(LANGUAGES)) | |
NUM_MODELS = len(set(MODELS)) | |
data = { | |
"Overall": {"metric": "Various, refer to task tabs", "data": []} | |
} | |
for task in TASKS: | |
data[task] = {"metric": TASKS_CONFIG[task]["metric_description"], "data": []} | |
for board, board_config in BOARDS_CONFIG.items(): | |
init_name = board_config["title"] | |
if init_name in PRETTY_NAMES: | |
init_name = PRETTY_NAMES[init_name] | |
board_pretty_name = f"{init_name} leaderboard" | |
acronym = board_config.get("acronym", None) | |
board_icon = board_config.get("icon", None) | |
if board_icon is None: | |
board_icon = "" | |
credits = board_config.get("credits", None) | |
metric = board_config.get("metric", None) | |
if board_config["has_overall"]: | |
overall_pretty_name = board_pretty_name | |
if acronym is not None: | |
overall_pretty_name += f" ({board_config['acronym']})" | |
data["Overall"]["data"].append({ | |
"language": board_config["title"], | |
"language_long": board_config["language_long"], | |
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}", | |
"data": boards_data[board]["data_overall"], | |
# "refresh": get_refresh_overall_function(board_config["tasks"]), | |
"credits": credits, | |
"metric": metric, | |
}) | |
for task_category, task_category_list in board_config["tasks"].items(): | |
task_icon = TASKS_CONFIG[task_category]['icon'] | |
if "special_icons" in board_config and isinstance(board_config["special_icons"], dict): | |
task_icon = board_config["special_icons"].get(task_category, task_icon) | |
data[task_category]["data"].append({ | |
"language": board_config["title"], | |
"language_long": board_config["language_long"], | |
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}", | |
"data": boards_data[board]["data_tasks"][task_category], | |
# "refresh": get_refresh_function(task_category, task_category_list), | |
"credits": credits, | |
"metric": metric, | |
}) | |
dataframes = [] | |
full_dataframes = [] | |
tabs = [] | |
# The following JavaScript function updates the URL parameters based on the selected task and language | |
# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language | |
# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects | |
# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio | |
set_window_url_params = """ | |
function(goalUrlObject) { | |
const params = new URLSearchParams(window.location.search); | |
for (const [key, value] of Object.entries(goalUrlObject)) { | |
params.set(key, value); | |
}; | |
const queryString = '?' + params.toString(); | |
console.log(queryString); | |
window.history.replaceState({}, '', queryString); | |
return []; | |
} | |
""" | |
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict): | |
current_task_language["task"] = event.target.id | |
# Either use the cached language for this task or the 1st language | |
try: | |
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id) | |
except Exception as e: # is Overall tab, no description | |
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id) | |
return current_task_language, language_per_task | |
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict): | |
current_task_language["language"] = event.target.id | |
if "task" not in current_task_language: | |
current_task_language["task"] = "overall" | |
language_per_task[current_task_language["task"]] = event.target.id | |
return current_task_language, language_per_task | |
NUMERIC_INTERVALS = { | |
"<100M": pd.Interval(0, 100, closed="right"), | |
"100M to 250M": pd.Interval(100, 250, closed="right"), | |
"250M to 500M": pd.Interval(250, 500, closed="right"), | |
"500M to 1B": pd.Interval(500, 1000, closed="right"), | |
">1B": pd.Interval(1000, 1_000_000, closed="right"), | |
} | |
MODEL_TYPES = [ | |
"Open", | |
"Proprietary", | |
"Sentence Transformers", | |
"Cross-Encoders", | |
"Bi-Encoders" | |
] | |
def filter_data(search_query, model_types, model_sizes, *full_dataframes): | |
output_dataframes = [] | |
for df in full_dataframes: | |
# Apply the search query | |
if search_query: | |
names = df["Model"].map(lambda x: re.match("<a .+?>(.+)</a>", x).group(1)) | |
masks = [] | |
for query in search_query.split(";"): | |
masks.append(names.str.lower().str.contains(query.lower())) | |
df = df[reduce(lambda a, b: a | b, masks)] | |
# Apply the model type filtering | |
if set(model_types) != set(MODEL_TYPES): | |
masks = [] | |
for model_type in model_types: | |
if model_type == "Open": | |
masks.append(~df["Model"].isin(PROPRIETARY_MODELS)) | |
elif model_type == "Proprietary": | |
masks.append(df["Model"].isin(PROPRIETARY_MODELS)) | |
elif model_type == "Sentence Transformers": | |
masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS)) | |
elif model_type == "Cross-Encoders": | |
masks.append(df["Model"].isin(CROSS_ENCODERS)) | |
elif model_type == "Bi-Encoders": | |
masks.append(df["Model"].isin(BI_ENCODERS)) | |
if masks: | |
df = df[reduce(lambda a, b: a | b, masks)] | |
else: | |
df = pd.DataFrame(columns=df.columns) | |
# Apply the model size filtering | |
if set(model_sizes) != set(NUMERIC_INTERVALS.keys()): | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes])) | |
sizes = df["Model Size (Million Parameters)"].replace('', 0) | |
mask = sizes.apply(lambda size: any(numeric_interval.contains(size))) | |
df = df[mask] | |
output_dataframes.append(df) | |
return output_dataframes | |
with gr.Blocks(css=css) as block: | |
# Store the current task and language for updating the URL. This is a bit hacky, but it works | |
# for passing the current task and language to the JavaScript function via Gradio | |
current_task_language = gr.JSON(value=dict(), visible=False) | |
language_per_task = gr.JSON(value=dict(), visible=False) | |
gr.Markdown(f""" | |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models. | |
""") | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
label="Search Bar (separate multiple queries with `;`)", | |
placeholder=" 🔍 Search for a model and press enter...", | |
) | |
filter_model_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=MODEL_TYPES, | |
value=MODEL_TYPES, | |
interactive=True, | |
elem_classes=["filter-checkbox-group"] | |
) | |
filter_model_sizes = gr.CheckboxGroup( | |
label="Model sizes (in number of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_classes=["filter-checkbox-group"], | |
scale=2, | |
) | |
with gr.Tabs() as outer_tabs: | |
# Store the tabs for updating them on load based on URL parameters | |
tabs.append(outer_tabs) | |
for task, task_values in data.items(): | |
metric = task_values["metric"] | |
task_tab_id = task.lower().replace(" ", "-") | |
# Overall, Bitext Mining, Classification, etc. | |
pretty_task_name = task if task not in PRETTY_NAMES.keys() else PRETTY_NAMES[task] | |
with gr.Tab(pretty_task_name, id=task_tab_id) as task_tab: | |
# For updating the 'task' in the URL | |
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params) | |
if "Overall" != task: | |
gr.Markdown(TASK_DESCRIPTIONS[task]) | |
with gr.Tabs() as task_tabs: | |
# Store the task tabs for updating them on load based on URL parameters | |
tabs.append(task_tabs) | |
for item in task_values["data"]: | |
item_tab_id = item["language"].lower().replace(" ", "-") | |
# English, Chinese, French, etc. | |
with gr.Tab(item["language"], id=item_tab_id) as item_tab: | |
# For updating the 'language' in the URL | |
item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params) | |
specific_metric = metric | |
if item.get("metric", None) is not None: | |
specific_metric = item['metric'] | |
with gr.Row(): | |
gr.Markdown(f""" | |
{item['description']} | |
- **Metric:** {specific_metric} | |
- **Languages:** {item['language_long'] if 'language_long' in item else item['language']} | |
{"- **Credits:** " + item['credits'] if ("credits" in item and item["credits"] is not None) else ''} | |
""") | |
with gr.Row(): | |
datatype = ["number", "markdown"] + ["number"] * len(item["data"]) | |
dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500) | |
dataframes.append(dataframe) | |
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False) | |
full_dataframes.append(full_dataframe) | |
# with gr.Row(): | |
# refresh_button = gr.Button("Refresh") | |
# refresh_button.click(item["refresh"], inputs=None, outputs=dataframe, concurrency_limit=20) | |
gr.Markdown(f""" | |
- **Total Datasets**: {NUM_DATASETS} | |
- **Total Languages**: 113 | |
- **Total Scores**: {NUM_SCORES} | |
- **Total Models**: {NUM_MODELS} | |
""" + r""" | |
Made with ❤️ for NLP. If this work is useful to you, please consider citing: | |
```bibtex | |
@article{muennighoff2022mteb, | |
doi = {10.48550/ARXIV.2210.07316}, | |
url = {https://arxiv.org/abs/2210.07316}, | |
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, | |
title = {MTEB: Massive Text Embedding Benchmark}, | |
publisher = {arXiv}, | |
journal={arXiv preprint arXiv:2210.07316}, | |
year = {2022} | |
} | |
``` | |
""") | |
def set_tabs_on_load(request: gr.Request): | |
"""Set the selected tab based on the URL parameters on load.""" | |
global tabs | |
valid_task_keys = [child.id for child in tabs[0].children] | |
return_tabs = [gr.Tabs()] * len(tabs) | |
query_params = request.request.query_params | |
task_key = query_params.get("task", "overall") | |
if task_key not in valid_task_keys: | |
task_key = "overall" | |
return_tabs[0] = gr.Tabs(selected=task_key) | |
tabs_idx = valid_task_keys.index(task_key) + 1 | |
language_key = query_params.get("language", "english") | |
return_tabs[tabs_idx] = gr.Tabs(selected=language_key) | |
current_task_language = {"task": task_key, "language": language_key} | |
language_per_task = {task_key: language_key} | |
return return_tabs + [current_task_language, language_per_task] | |
block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task]) | |
search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
block.queue(max_size=10) | |
block.launch() | |
# Add model names here so the mteb/leaderboard space shows up on their model page | |
# print("','".join(MODEL_META["models_to_skip"])) | |
# print("','".join(list(MODEL_META['model_meta'].keys()))) | |
UNUSED = ['michaelfeil/ct2fast-e5-large-v2','McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-unsup-simcse','newsrx/instructor-xl','sionic-ai/sionic-ai-v1','lsf1000/bge-evaluation','Intel/bge-small-en-v1.5-sst2','newsrx/instructor-xl-newsrx','McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-unsup-simcse','McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-unsup-simcse','davidpeer/gte-small','goldenrooster/multilingual-e5-large','kozistr/fused-large-en','mixamrepijey/instructor-small','McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised','DecisionOptimizationSystem/DeepFeatEmbeddingLargeContext','Intel/bge-base-en-v1.5-sst2-int8-dynamic','morgendigital/multilingual-e5-large-quantized','BAAI/bge-small-en','ggrn/e5-small-v2','vectoriseai/gte-small','giulio98/placeholder','odunola/UAE-Large-VI','vectoriseai/e5-large-v2','gruber/e5-small-v2-ggml','Severian/nomic','arcdev/e5-mistral-7b-instruct','mlx-community/multilingual-e5-base-mlx','michaelfeil/ct2fast-bge-base-en-v1.5','Intel/bge-small-en-v1.5-sst2-int8-static','jncraton/stella-base-en-v2-ct2-int8','vectoriseai/multilingual-e5-large','rlsChapters/Chapters-SFR-Embedding-Mistral','arcdev/SFR-Embedding-Mistral','McGill-NLP/LLM2Vec-Mistral-7B-Instruct-v2-mntp-supervised','McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised','vectoriseai/gte-base','mixamrepijey/instructor-models','GovCompete/e5-large-v2','ef-zulla/e5-multi-sml-torch','khoa-klaytn/bge-small-en-v1.5-angle','krilecy/e5-mistral-7b-instruct','vectoriseai/bge-base-en-v1.5','vectoriseai/instructor-base','jingyeom/korean_embedding_model','rizki/bgr-tf','barisaydin/bge-base-en','jamesgpt1/zzz','Malmuk1/e5-large-v2_Sharded','vectoriseai/ember-v1','Consensus/instructor-base','barisaydin/bge-small-en','barisaydin/gte-base','woody72/multilingual-e5-base','Einas/einas_ashkar','michaelfeil/ct2fast-bge-large-en-v1.5','vectoriseai/bge-small-en-v1.5','iampanda/Test','cherubhao/yogamodel','ieasybooks/multilingual-e5-large-onnx','jncraton/e5-small-v2-ct2-int8','radames/e5-large','khoa-klaytn/bge-base-en-v1.5-angle','Intel/bge-base-en-v1.5-sst2-int8-static','vectoriseai/e5-large','TitanML/jina-v2-base-en-embed','Koat/gte-tiny','binqiangliu/EmbeddingModlebgelargeENv1.5','beademiguelperez/sentence-transformers-multilingual-e5-small','sionic-ai/sionic-ai-v2','jamesdborin/jina-v2-base-en-embed','maiyad/multilingual-e5-small','dmlls/all-mpnet-base-v2','odunola/e5-base-v2','vectoriseai/bge-large-en-v1.5','vectoriseai/bge-small-en','karrar-alwaili/UAE-Large-V1','t12e/instructor-base','Frazic/udever-bloom-3b-sentence','Geolumina/instructor-xl','hsikchi/dump','recipe/embeddings','michaelfeil/ct2fast-bge-small-en-v1.5','ildodeltaRule/multilingual-e5-large','shubham-bgi/UAE-Large','BAAI/bge-large-en','michaelfeil/ct2fast-e5-small-v2','cgldo/semanticClone','barisaydin/gte-small','aident-ai/bge-base-en-onnx','jamesgpt1/english-large-v1','michaelfeil/ct2fast-e5-small','baseplate/instructor-large-1','newsrx/instructor-large','Narsil/bge-base-en','michaelfeil/ct2fast-e5-large','mlx-community/multilingual-e5-small-mlx','lightbird-ai/nomic','MaziyarPanahi/GritLM-8x7B-GGUF','newsrx/instructor-large-newsrx','dhairya0907/thenlper-get-large','barisaydin/bge-large-en','jncraton/bge-small-en-ct2-int8','retrainai/instructor-xl','BAAI/bge-base-en','gentlebowl/instructor-large-safetensors','d0rj/e5-large-en-ru','atian-chapters/Chapters-SFR-Embedding-Mistral','Intel/bge-base-en-v1.5-sts-int8-static','Intel/bge-base-en-v1.5-sts-int8-dynamic','jncraton/GIST-small-Embedding-v0-ct2-int8','jncraton/gte-tiny-ct2-int8','d0rj/e5-small-en-ru','vectoriseai/e5-small-v2','SmartComponents/bge-micro-v2','michaelfeil/ct2fast-gte-base','vectoriseai/e5-base-v2','Intel/bge-base-en-v1.5-sst2','McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-supervised','Research2NLP/electrical_stella','weakit-v/bge-base-en-v1.5-onnx','GovCompete/instructor-xl','barisaydin/text2vec-base-multilingual','Intel/bge-small-en-v1.5-sst2-int8-dynamic','jncraton/gte-small-ct2-int8','d0rj/e5-base-en-ru','barisaydin/gte-large','fresha/e5-large-v2-endpoint','vectoriseai/instructor-large','Severian/embed','vectoriseai/e5-base','mlx-community/multilingual-e5-large-mlx','vectoriseai/gte-large','anttip/ct2fast-e5-small-v2-hfie','michaelfeil/ct2fast-gte-large','gizmo-ai/Cohere-embed-multilingual-v3.0','McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse','Kenknight1999/tungdd7_ft_e5','joteqwork/new_gsev0','vantagediscovery/jina-embeddings-v2-base-en','vantagediscovery/nomic-embed-text-v1','vantagediscovery/nomic-embed-text-v1.5','srikanthmalla/hkunlp-instructor-xl','afrideva/GIST-all-MiniLM-L6-v2-GGUF','nadeem1362/mxbai-embed-large-v1-Q4_K_M-GGUF','agier9/gte-Qwen1.5-7B-instruct-Q5_K_M-GGUF','ekorman-strive/bge-large-en-v1.5','raghavlight/SE_v1','liddlefish/privacyembeddingv2_bge_small','ahmet1338/finetuned_embedder','radia/snowflake-arctic-embed-l-Q4_K_M-GGUF','GregorBiswanger/GritLM-7B-Q4_K_M-GGUF','powermove72/GritLM-7B-Q4_K_M-GGUF','sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF','nazimali/gte-Qwen2-7B-instruct-Q6_K-GGUF','nazimali/gte-Qwen2-7B-instruct-Q6_K-GGUF','fishbone64/gte-Qwen2-7B-instruct-Q8_0-GGUF','tobchef/gte-Qwen2-1.5B-instruct-Q4_K_M-GGUF','liddlefish/privacy_embedding_rag','liddlefish/privacy_embedding_rag_10k_tmp','liddlefish/privacy_embedding_bge_small_synthetic','mxs980/gte-Qwen2-1.5B-instruct-Q8_0-GGUF','leonn71/gte-Qwen2-1.5B-instruct-Q6_K-GGUF', 'Baichuan-text-embedding','Cohere-embed-english-v3.0','Cohere-embed-multilingual-light-v3.0','Cohere-embed-multilingual-v3.0','DanskBERT','FollowIR-7B','GritLM-7B','LASER2','LLM2Vec-Llama-2-supervised','LLM2Vec-Llama-2-unsupervised','LLM2Vec-Meta-Llama-3-supervised','LLM2Vec-Meta-Llama-3-unsupervised','LLM2Vec-Mistral-supervised','LLM2Vec-Mistral-unsupervised','LLM2Vec-Sheared-Llama-supervised','LLM2Vec-Sheared-Llama-unsupervised','LaBSE','OpenSearch-text-hybrid','SFR-Embedding-Mistral','all-MiniLM-L12-v2','all-MiniLM-L6-v2','all-mpnet-base-v2','allenai-specter','bert-base-10lang-cased','bert-base-15lang-cased','bert-base-25lang-cased','bert-base-multilingual-cased','bert-base-multilingual-uncased','bert-base-swedish-cased','bert-base-uncased','bge-base-zh-v1.5','bge-large-en-v1.5','bge-large-zh-noinstruct','bge-large-zh-v1.5','bge-m3','bge-small-zh-v1.5','bm25','camembert-base','camembert-large','contriever-base-msmarco','cross-en-de-roberta-sentence-transformer','dfm-encoder-large-v1','dfm-sentence-encoder-large-1','distilbert-base-25lang-cased','distilbert-base-en-fr-cased','distilbert-base-en-fr-es-pt-it-cased','distilbert-base-fr-cased','distilbert-base-uncased','distiluse-base-multilingual-cased-v2','e5-base-4k','e5-base-v2','e5-base','e5-large-v2','e5-large','e5-mistral-7b-instruct','e5-small','electra-small-nordic','electra-small-swedish-cased-discriminator','elser-v2','flan-t5-base','flan-t5-large','flaubert_base_cased','flaubert_base_uncased','flaubert_large_cased','gbert-base','gbert-large','gelectra-base','gelectra-large','glove.6B.300d','google-gecko-256.text-embedding-preview-0409','google-gecko.text-embedding-preview-0409','gottbert-base','gte-Qwen1.5-7B-instruct','gte-Qwen2-7B-instruct','gtr-t5-base','gtr-t5-large','gtr-t5-xl','gtr-t5-xxl','herbert-base-retrieval-v2','instructor-base','instructor-large','instructor-xl','jina-embeddings-v2-base-en','komninos','llama-2-7b-chat','luotuo-bert-medium','m3e-base','m3e-large','mistral-7b-instruct-v0.2','mistral-embed','monobert-large-msmarco','monot5-3b-msmarco-10k','monot5-base-msmarco-10k','msmarco-bert-co-condensor','multi-qa-MiniLM-L6-cos-v1','multilingual-e5-base','multilingual-e5-large','multilingual-e5-small','nb-bert-base','nb-bert-large','nomic-embed-text-v1','nomic-embed-text-v1.5-128','nomic-embed-text-v1.5-256','nomic-embed-text-v1.5-512','nomic-embed-text-v1.5-64','norbert3-base','norbert3-large','paraphrase-multilingual-MiniLM-L12-v2','paraphrase-multilingual-mpnet-base-v2','sentence-bert-swedish-cased','sentence-camembert-base','sentence-camembert-large','sentence-croissant-llm-base','sentence-t5-base','sentence-t5-large','sentence-t5-xl','sentence-t5-xxl','silver-retriever-base-v1','st-polish-paraphrase-from-distilroberta','st-polish-paraphrase-from-mpnet','sup-simcse-bert-base-uncased','text-embedding-3-large','text-embedding-3-large-256','text-embedding-3-small','text-embedding-ada-002','text-search-ada-001','text-search-ada-doc-001','text-search-ada-query-001','text-search-babbage-001','text-search-curie-001','text-search-davinci-001','text-similarity-ada-001','text-similarity-babbage-001','text-similarity-curie-001','text-similarity-davinci-001','tart-dual-contriever-msmarco','tart-full-flan-t5-xl','text2vec-base-chinese','text2vec-base-multilingual','text2vec-large-chinese','titan-embed-text-v1','udever-bloom-1b1','udever-bloom-560m','universal-sentence-encoder-multilingual-3','universal-sentence-encoder-multilingual-large-3','unsup-simcse-bert-base-uncased','use-cmlm-multilingual','voyage-2','voyage-code-2','voyage-large-2-instruct','voyage-law-2','voyage-lite-01-instruct','voyage-lite-02-instruct','voyage-multilingual-2','xlm-roberta-base','xlm-roberta-large','NV-Retriever-v1','NV-Embed-v1','Linq-Embed-Mistral'] | |
# Possible changes: | |
# Could add graphs / other visual content | |
# Could add verification marks | |
# Sources: | |
# https://huggingface.co/spaces/gradio/leaderboard | |
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard | |
# https://getemoji.com/ | |