Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from functools import reduce | |
import json | |
import os | |
import re | |
from datasets import load_dataset | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
import pandas as pd | |
from tqdm.autonotebook import tqdm | |
from utils.model_size import get_model_parameters_memory | |
from envs import LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO, API | |
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"] | |
BOARDS_CONFIG = LEADERBOARD_CONFIG["boards"] | |
TASKS = list(TASKS_CONFIG.keys()) | |
PRETTY_NAMES = { | |
"InstructionRetrieval": "Retrieval w/Instructions", | |
"PairClassification": "Pair Classification", | |
"BitextMining": "Bitext Mining", | |
} | |
TASK_TO_METRIC = {k: v["metric"] for k, v in TASKS_CONFIG.items()} | |
def make_clickable_model(model_name, link=None): | |
if link is None: | |
link = "https://huggingface.co/" + model_name | |
# Remove user from model name | |
return ( | |
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>' | |
) | |
EXTERNAL_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_external", False)} | |
EXTERNAL_MODEL_TO_LINK = {k: v["link"] for k,v in MODEL_META["model_meta"].items() if v.get("link", False)} | |
EXTERNAL_MODEL_TO_DIM = {k: v["dim"] for k,v in MODEL_META["model_meta"].items() if v.get("dim", False)} | |
EXTERNAL_MODEL_TO_SEQLEN = {k: v["seq_len"] for k,v in MODEL_META["model_meta"].items() if v.get("seq_len", False)} | |
EXTERNAL_MODEL_TO_SIZE = {k: v["size"] for k,v in MODEL_META["model_meta"].items() if v.get("size", False)} | |
PROPRIETARY_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False)} | |
TASK_DESCRIPTIONS = {k: v["task_description"] for k,v in TASKS_CONFIG.items()} | |
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks." | |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_sentence_transformers_compatible", False)} | |
MODELS_TO_SKIP = MODEL_META["models_to_skip"] | |
CROSS_ENCODERS = MODEL_META["cross_encoders"] | |
BI_ENCODERS = [k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"]] | |
PROPRIETARY_MODELS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in PROPRIETARY_MODELS | |
} | |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS | |
} | |
CROSS_ENCODERS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in CROSS_ENCODERS | |
} | |
BI_ENCODERS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in BI_ENCODERS | |
} | |
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS} | |
for board_config in BOARDS_CONFIG.values(): | |
for task_category, task_list in board_config["tasks"].items(): | |
TASK_TO_TASK_TYPE[task_category].extend(task_list) | |
def add_lang(examples): | |
if not(examples["eval_language"]): | |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] | |
else: | |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})' | |
return examples | |
def norm(names): return set([name.split(" ")[0] for name in names]) | |
def add_task(examples): | |
# Could be added to the dataset loading script instead | |
task_name = examples["mteb_dataset_name"] | |
task_type = None | |
for task_category, task_list in TASK_TO_TASK_TYPE.items(): | |
if task_name in norm(task_list): | |
task_type = task_category | |
break | |
if task_type is not None: | |
examples["mteb_task"] = task_type | |
else: | |
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"]) | |
examples["mteb_task"] = "Unknown" | |
return examples | |
def filter_metric_external(x, task, metric): | |
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks. | |
if x['mteb_dataset_name'] in ['LEMBNeedleRetrieval', 'LEMBPasskeyRetrieval']: | |
return x["mteb_task"] == task and x['metric'] == 'ndcg_at_1' | |
else: | |
return x["mteb_task"] == task and x["metric"] == metric | |
def filter_metric_fetched(name, metric, expected_metric): | |
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks. | |
return metric == 'ndcg_at_1' if name in ['LEMBNeedleRetrieval', 'LEMBPasskeyRetrieval'] else metric == expected_metric | |
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"): | |
with open("EXTERNAL_MODEL_RESULTS.json") as f: | |
EXTERNAL_MODEL_RESULTS = json.load(f) | |
# Update with models not contained | |
models_to_run = [] | |
for model in EXTERNAL_MODELS: | |
if model not in EXTERNAL_MODEL_RESULTS: | |
models_to_run.append(model) | |
EXTERNAL_MODEL_RESULTS[model] = {k: {v: []} for k, v in TASK_TO_METRIC.items()} | |
else: | |
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS} | |
models_to_run = EXTERNAL_MODELS | |
pbar = tqdm(models_to_run, desc="Fetching external model results") | |
for model in pbar: | |
pbar.set_description(f"Fetching external model results for {model!r}") | |
ds = load_dataset(RESULTS_REPO, model, trust_remote_code=True) | |
# For local debugging: | |
#, download_mode='force_redownload', verification_mode="no_checks") | |
ds = ds.map(add_lang) | |
ds = ds.map(add_task) | |
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))} | |
for task, metric in TASK_TO_METRIC.items(): | |
ds_dict = ds.filter(lambda x: filter_metric_external(x, task, metric))["test"].to_dict() | |
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])} | |
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict}) | |
# Save & cache EXTERNAL_MODEL_RESULTS | |
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f: | |
json.dump(EXTERNAL_MODEL_RESULTS, f) | |
def get_dim_seq_size(model): | |
filenames = [sib.rfilename for sib in model.siblings] | |
dim, seq = "", "" | |
for filename in filenames: | |
if re.match("\d+_Pooling/config.json", filename): | |
st_config_path = hf_hub_download(model.modelId, filename=filename) | |
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "") | |
break | |
for filename in filenames: | |
if re.match("\d+_Dense/config.json", filename): | |
st_config_path = hf_hub_download(model.modelId, filename=filename) | |
dim = json.load(open(st_config_path)).get("out_features", dim) | |
if "config.json" in filenames: | |
config_path = hf_hub_download(model.modelId, filename="config.json") | |
config = json.load(open(config_path)) | |
if not dim: | |
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", ""))) | |
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", "")))) | |
if dim == "" or seq == "": | |
raise Exception(f"Could not find dim or seq for model {model.modelId}") | |
# Get model file size without downloading. Parameters in million parameters and memory in GB | |
parameters, memory = get_model_parameters_memory(model) | |
return dim, seq, parameters, memory | |
def make_datasets_clickable(df): | |
"""Does not work""" | |
if "BornholmBitextMining" in df.columns: | |
link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel" | |
df = df.rename( | |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',}) | |
return df | |
def add_rank(df): | |
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]] | |
if len(cols_to_rank) == 1: | |
df.sort_values(cols_to_rank[0], ascending=False, inplace=True) | |
else: | |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False)) | |
df.sort_values("Average", ascending=False, inplace=True) | |
df.insert(0, "Rank", list(range(1, len(df) + 1))) | |
df = df.round(2) | |
# Fill NaN after averaging | |
df.fillna("", inplace=True) | |
return df | |
model_infos_path = "model_infos.json" | |
MODEL_INFOS = {} | |
if os.path.exists(model_infos_path): | |
with open(model_infos_path) as f: | |
MODEL_INFOS = json.load(f) | |
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True, refresh=True): | |
global MODEL_INFOS | |
api = API | |
models = api.list_models(filter="mteb") | |
# Legacy names changes; Also fetch the old results & merge later | |
if ('MLSUMClusteringP2P (fr)' in datasets): | |
datasets.append('MLSUMClusteringP2P') | |
if ('MLSUMClusteringS2S (fr)' in datasets): | |
datasets.append('MLSUMClusteringS2S') | |
# Initialize list to models that we cannot fetch metadata from | |
df_list = [] | |
for model in EXTERNAL_MODEL_RESULTS: | |
results_list = [] | |
for task in tasks: | |
# Not all models have InstructionRetrieval, other new tasks | |
if task not in EXTERNAL_MODEL_RESULTS[model]: | |
continue | |
results_list += EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]] | |
if len(datasets) > 0: | |
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])} | |
elif langs: | |
# Would be cleaner to rely on an extra language column instead | |
langs_format = [f"({lang})" for lang in langs] | |
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])} | |
else: | |
res = {k: v for d in results_list for k, v in d.items()} | |
# Model & at least one result | |
if len(res) > 1: | |
if add_emb_dim: | |
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "") | |
res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else "" | |
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "") | |
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "") | |
df_list.append(res) | |
for model in models: | |
if model.modelId in MODELS_TO_SKIP: continue | |
print("MODEL", model.modelId) | |
if model.modelId not in MODEL_INFOS or refresh: | |
readme_path = hf_hub_download(model.modelId, filename="README.md") | |
meta = metadata_load(readme_path) | |
MODEL_INFOS[model.modelId] = { | |
"metadata": meta | |
} | |
meta = MODEL_INFOS[model.modelId]["metadata"] | |
if "model-index" not in meta: | |
continue | |
# meta['model-index'][0]["results"] is list of elements like: | |
# { | |
# "task": {"type": "Classification"}, | |
# "dataset": { | |
# "type": "mteb/amazon_massive_intent", | |
# "name": "MTEB MassiveIntentClassification (nb)", | |
# "config": "nb", | |
# "split": "test", | |
# }, | |
# "metrics": [ | |
# {"type": "accuracy", "value": 39.81506388702084}, | |
# {"type": "f1", "value": 38.809586587791664}, | |
# ], | |
# }, | |
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out | |
if len(datasets) > 0: | |
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])] | |
elif langs: | |
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))] | |
else: | |
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)] | |
# if model.modelId == "w601sxs/b1ade-embed-kd_3": | |
# import pdb; pdb.set_trace() | |
try: | |
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if filter_metric_fetched(res["dataset"]["name"].replace("MTEB ", ""), score["type"], task_to_metric.get(res["task"]["type"]))][0]} for res in task_results] | |
except: | |
print("ERROR", model.modelId) | |
continue | |
out = {k: v for d in out for k, v in d.items()} | |
out["Model"] = make_clickable_model(model.modelId) | |
# Model & at least one result | |
if len(out) > 1: | |
if add_emb_dim: | |
# The except clause triggers on gated repos, we can use external metadata for those | |
try: | |
if "dim_seq_size" not in MODEL_INFOS[model.modelId] or refresh: | |
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model)) | |
except: | |
name_without_org = model.modelId.split("/")[-1] | |
# EXTERNAL_MODEL_TO_SIZE[name_without_org] refers to millions of parameters, so for memory usage | |
# we multiply by 1e6 to get just the number of parameters, then by 4 to get the number of bytes | |
# given fp32 precision (4 bytes per float), then divide by 1024**3 to get the number of GB | |
MODEL_INFOS[model.modelId]["dim_seq_size"] = ( | |
EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""), | |
EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""), | |
EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""), | |
round(EXTERNAL_MODEL_TO_SIZE[name_without_org] * 1e6 * 4 / 1024**3, 2) if name_without_org in EXTERNAL_MODEL_TO_SIZE else "", | |
) | |
out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"]) | |
df_list.append(out) | |
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}: | |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"]) | |
# Save & cache MODEL_INFOS | |
with open("model_infos.json", "w") as f: | |
json.dump(MODEL_INFOS, f) | |
df = pd.DataFrame(df_list) | |
# If there are any models that are the same, merge them | |
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one | |
df = df.groupby("Model", as_index=False).first() | |
# Put 'Model' column first | |
cols = sorted(list(df.columns)) | |
base_columns = ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"] | |
if len(datasets) > 0: | |
# Update legacy column names to be merged with newer ones | |
# Update 'MLSUMClusteringP2P (fr)' with values from 'MLSUMClusteringP2P' | |
#if ('MLSUMClusteringP2P (fr)' in datasets): | |
# import pdb; pdb.set_trace() | |
if ('MLSUMClusteringP2P (fr)' in datasets) and ('MLSUMClusteringP2P' in cols): | |
#import pdb; pdb.set_trace() | |
df['MLSUMClusteringP2P (fr)'] = df['MLSUMClusteringP2P (fr)'].fillna(df['MLSUMClusteringP2P']) | |
datasets.remove('MLSUMClusteringP2P') | |
if ('MLSUMClusteringS2S (fr)' in datasets) and ('MLSUMClusteringS2S' in cols): | |
df['MLSUMClusteringS2S (fr)'] = df['MLSUMClusteringS2S (fr)'].fillna(df['MLSUMClusteringS2S']) | |
datasets.remove('MLSUMClusteringS2S') | |
# Filter invalid columns | |
cols = [col for col in cols if col in base_columns + datasets] | |
i = 0 | |
for column in base_columns: | |
if column in cols: | |
cols.insert(i, cols.pop(cols.index(column))) | |
i += 1 | |
df = df[cols] | |
if rank: | |
df = add_rank(df) | |
if fillna: | |
df.fillna("", inplace=True) | |
return df | |
# Get dict with a task list for each task category | |
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]} | |
def get_mteb_average(task_dict: dict, refresh=True): | |
all_tasks = reduce(lambda x, y: x + y, task_dict.values()) | |
DATA_OVERALL = get_mteb_data( | |
tasks=list(task_dict.keys()), | |
datasets=all_tasks, | |
fillna=False, | |
add_emb_dim=True, | |
rank=False, | |
refresh=refresh | |
) | |
# Debugging: | |
# DATA_OVERALL.to_csv("overall.csv") | |
DATA_OVERALL.insert(1, f"Average ({len(all_tasks)} datasets)", DATA_OVERALL[all_tasks].mean(axis=1, skipna=False)) | |
for i, (task_category, task_category_list) in enumerate(task_dict.items()): | |
DATA_OVERALL.insert(i+2, f"{task_category} Average ({len(task_category_list)} datasets)", DATA_OVERALL[task_category_list].mean(axis=1, skipna=False)) | |
DATA_OVERALL.sort_values(f"Average ({len(all_tasks)} datasets)", ascending=False, inplace=True) | |
# Start ranking from 1 | |
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1))) | |
DATA_OVERALL = DATA_OVERALL.round(2) | |
DATA_TASKS = {} | |
for task_category, task_category_list in task_dict.items(): | |
DATA_TASKS[task_category] = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + task_category_list]) | |
DATA_TASKS[task_category] = DATA_TASKS[task_category][DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1)] | |
# Fill NaN after averaging | |
DATA_OVERALL.fillna("", inplace=True) | |
data_overall_rows = ["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(all_tasks)} datasets)"] | |
for task_category, task_category_list in task_dict.items(): | |
data_overall_rows.append(f"{task_category} Average ({len(task_category_list)} datasets)") | |
DATA_OVERALL = DATA_OVERALL[data_overall_rows] | |
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)] | |
return DATA_OVERALL, DATA_TASKS | |
boards_data = {} | |
all_data_tasks = [] | |
for board, board_config in BOARDS_CONFIG.items(): | |
boards_data[board] = { | |
"data_overall": None, | |
"data_tasks": {} | |
} | |
if board_config["has_overall"]: | |
data_overall, data_tasks = get_mteb_average(board_config["tasks"], refresh=False) | |
boards_data[board]["data_overall"] = data_overall | |
boards_data[board]["data_tasks"] = data_tasks | |
all_data_tasks.extend(data_tasks.values()) | |
else: | |
for task_category, task_category_list in board_config["tasks"].items(): | |
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_category_list, refresh=False) | |
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True) | |
boards_data[board]["data_tasks"][task_category] = data_task_category | |
all_data_tasks.append(data_task_category) | |
# Exact, add all non-nan integer values for every dataset | |
NUM_SCORES = 0 | |
DATASETS = [] | |
MODELS = [] | |
# LANGUAGES = [] | |
for d in all_data_tasks: | |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum() | |
cols_to_ignore = 4 if "Average" in d.columns else 3 | |
# Count number of scores including only non-nan floats & excluding the rank column | |
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum() | |
# Exclude rank & model name column (first two); Do not count different language versions as different datasets | |
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]] | |
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]] | |
MODELS += d["Model"].tolist() | |
NUM_DATASETS = len(set(DATASETS)) | |
# NUM_LANGUAGES = len(set(LANGUAGES)) | |
NUM_MODELS = len(set(MODELS)) | |
# 1. Force headers to wrap | |
# 2. Force model column (maximum) width | |
# 3. Prevent model column from overflowing, scroll instead | |
# 4. Prevent checkbox groups from taking up too much space | |
css = """ | |
table > thead { | |
white-space: normal | |
} | |
table { | |
--cell-width-1: 250px | |
} | |
table > tbody > tr > td:nth-child(2) > div { | |
overflow-x: auto | |
} | |
.filter-checkbox-group { | |
max-width: max-content; | |
} | |
""" | |
""" | |
Each inner tab can have the following keys: | |
- language: The language of the leaderboard | |
- language_long: [optional] The long form of the language | |
- description: The description of the leaderboard | |
- credits: [optional] The credits for the leaderboard | |
- data: The data for the leaderboard | |
- refresh: The function to refresh the leaderboard | |
""" | |
def get_refresh_function(task_category, task_list): | |
def _refresh(): | |
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_list) | |
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True) | |
return data_task_category | |
return _refresh | |
def get_refresh_overall_function(tasks): | |
return lambda: get_mteb_average(tasks)[0] | |
data = { | |
"Overall": {"metric": "Various, refer to task tabs", "data": []} | |
} | |
for task in TASKS: | |
data[task] = {"metric": TASKS_CONFIG[task]["metric_description"], "data": []} | |
for board, board_config in BOARDS_CONFIG.items(): | |
init_name = board_config["title"] | |
if init_name in PRETTY_NAMES: | |
init_name = PRETTY_NAMES[init_name] | |
board_pretty_name = f"{init_name} leaderboard" | |
acronym = board_config.get("acronym", None) | |
board_icon = board_config.get("icon", None) | |
if board_icon is None: | |
board_icon = "" | |
credits = board_config.get("credits", None) | |
metric = board_config.get("metric", None) | |
if board_config["has_overall"]: | |
overall_pretty_name = board_pretty_name | |
if acronym is not None: | |
overall_pretty_name += f" ({board_config['acronym']})" | |
data["Overall"]["data"].append({ | |
"language": board_config["title"], | |
"language_long": board_config["language_long"], | |
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}", | |
"data": boards_data[board]["data_overall"], | |
"refresh": get_refresh_overall_function(board_config["tasks"]), | |
"credits": credits, | |
"metric": metric, | |
}) | |
for task_category, task_category_list in board_config["tasks"].items(): | |
task_icon = TASKS_CONFIG[task_category]['icon'] | |
if "special_icons" in board_config and isinstance(board_config["special_icons"], dict): | |
task_icon = board_config["special_icons"].get(task_category, task_icon) | |
data[task_category]["data"].append({ | |
"language": board_config["title"], | |
"language_long": board_config["language_long"], | |
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}", | |
"data": boards_data[board]["data_tasks"][task_category], | |
"refresh": get_refresh_function(task_category, task_category_list), | |
"credits": credits, | |
"metric": metric, | |
}) | |
dataframes = [] | |
full_dataframes = [] | |
tabs = [] | |
# The following JavaScript function updates the URL parameters based on the selected task and language | |
# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language | |
# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects | |
# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio | |
set_window_url_params = """ | |
function(goalUrlObject) { | |
const params = new URLSearchParams(window.location.search); | |
for (const [key, value] of Object.entries(goalUrlObject)) { | |
params.set(key, value); | |
}; | |
const queryString = '?' + params.toString(); | |
console.log(queryString); | |
window.history.replaceState({}, '', queryString); | |
return []; | |
} | |
""" | |
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict): | |
current_task_language["task"] = event.target.id | |
# Either use the cached language for this task or the 1st language | |
try: | |
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id) | |
except Exception as e: # is Overall tab, no description | |
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id) | |
return current_task_language, language_per_task | |
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict): | |
current_task_language["language"] = event.target.id | |
if "task" not in current_task_language: | |
current_task_language["task"] = "overall" | |
language_per_task[current_task_language["task"]] = event.target.id | |
return current_task_language, language_per_task | |
NUMERIC_INTERVALS = { | |
"<100M": pd.Interval(0, 100, closed="right"), | |
"100M to 250M": pd.Interval(100, 250, closed="right"), | |
"250M to 500M": pd.Interval(250, 500, closed="right"), | |
"500M to 1B": pd.Interval(500, 1000, closed="right"), | |
">1B": pd.Interval(1000, 1_000_000, closed="right"), | |
} | |
MODEL_TYPES = [ | |
"Open", | |
"Proprietary", | |
"Sentence Transformers", | |
"Cross-Encoders", | |
"Bi-Encoders" | |
] | |
def filter_data(search_query, model_types, model_sizes, *full_dataframes): | |
output_dataframes = [] | |
for df in full_dataframes: | |
# Apply the search query | |
if search_query: | |
names = df["Model"].map(lambda x: re.match("<a .+?>(.+)</a>", x).group(1)) | |
masks = [] | |
for query in search_query.split(";"): | |
masks.append(names.str.lower().str.contains(query.lower())) | |
df = df[reduce(lambda a, b: a | b, masks)] | |
# Apply the model type filtering | |
if set(model_types) != set(MODEL_TYPES): | |
masks = [] | |
for model_type in model_types: | |
if model_type == "Open": | |
masks.append(~df["Model"].isin(PROPRIETARY_MODELS)) | |
elif model_type == "Proprietary": | |
masks.append(df["Model"].isin(PROPRIETARY_MODELS)) | |
elif model_type == "Sentence Transformers": | |
masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS)) | |
elif model_type == "Cross-Encoders": | |
masks.append(df["Model"].isin(CROSS_ENCODERS)) | |
elif model_type == "Bi-Encoders": | |
masks.append(df["Model"].isin(BI_ENCODERS)) | |
if masks: | |
df = df[reduce(lambda a, b: a | b, masks)] | |
else: | |
df = pd.DataFrame(columns=df.columns) | |
# Apply the model size filtering | |
if set(model_sizes) != set(NUMERIC_INTERVALS.keys()): | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes])) | |
sizes = df["Model Size (Million Parameters)"].replace('', 0) | |
mask = sizes.apply(lambda size: any(numeric_interval.contains(size))) | |
df = df[mask] | |
output_dataframes.append(df) | |
return output_dataframes | |
with gr.Blocks(css=css) as block: | |
# Store the current task and language for updating the URL. This is a bit hacky, but it works | |
# for passing the current task and language to the JavaScript function via Gradio | |
current_task_language = gr.JSON(value=dict(), visible=False) | |
language_per_task = gr.JSON(value=dict(), visible=False) | |
gr.Markdown(f""" | |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models. | |
""") | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
label="Search Bar (separate multiple queries with `;`)", | |
placeholder=" 🔍 Search for a model and press enter...", | |
) | |
filter_model_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=MODEL_TYPES, | |
value=MODEL_TYPES, | |
interactive=True, | |
elem_classes=["filter-checkbox-group"] | |
) | |
filter_model_sizes = gr.CheckboxGroup( | |
label="Model sizes (in number of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_classes=["filter-checkbox-group"], | |
scale=2, | |
) | |
with gr.Tabs() as outer_tabs: | |
# Store the tabs for updating them on load based on URL parameters | |
tabs.append(outer_tabs) | |
for task, task_values in data.items(): | |
metric = task_values["metric"] | |
task_tab_id = task.lower().replace(" ", "-") | |
# Overall, Bitext Mining, Classification, etc. | |
pretty_task_name = task if task not in PRETTY_NAMES.keys() else PRETTY_NAMES[task] | |
with gr.Tab(pretty_task_name, id=task_tab_id) as task_tab: | |
# For updating the 'task' in the URL | |
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params) | |
if "Overall" != task: | |
gr.Markdown(TASK_DESCRIPTIONS[task]) | |
with gr.Tabs() as task_tabs: | |
# Store the task tabs for updating them on load based on URL parameters | |
tabs.append(task_tabs) | |
for item in task_values["data"]: | |
item_tab_id = item["language"].lower().replace(" ", "-") | |
# English, Chinese, French, etc. | |
with gr.Tab(item["language"], id=item_tab_id) as item_tab: | |
# For updating the 'language' in the URL | |
item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params) | |
specific_metric = metric | |
if item.get("metric", None) is not None: | |
specific_metric = item['metric'] | |
with gr.Row(): | |
gr.Markdown(f""" | |
{item['description']} | |
- **Metric:** {item.get('metric', metric)} | |
- **Languages:** {item['language_long'] if 'language_long' in item else item['language']} | |
{"- **Credits:** " + item['credits'] if ("credits" in item and item["credits"] is not None) else ''} | |
""") | |
with gr.Row(): | |
datatype = ["number", "markdown"] + ["number"] * len(item["data"]) | |
dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500) | |
dataframes.append(dataframe) | |
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False) | |
full_dataframes.append(full_dataframe) | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
refresh_button.click(item["refresh"], inputs=None, outputs=dataframe, concurrency_limit=20) | |
gr.Markdown(f""" | |
- **Total Datasets**: {NUM_DATASETS} | |
- **Total Languages**: 113 | |
- **Total Scores**: {NUM_SCORES} | |
- **Total Models**: {NUM_MODELS} | |
""" + r""" | |
Made with ❤️ for NLP. If this work is useful to you, please consider citing: | |
```bibtex | |
@article{muennighoff2022mteb, | |
doi = {10.48550/ARXIV.2210.07316}, | |
url = {https://arxiv.org/abs/2210.07316}, | |
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, | |
title = {MTEB: Massive Text Embedding Benchmark}, | |
publisher = {arXiv}, | |
journal={arXiv preprint arXiv:2210.07316}, | |
year = {2022} | |
} | |
``` | |
""") | |
def set_tabs_on_load(request: gr.Request): | |
"""Set the selected tab based on the URL parameters on load.""" | |
global tabs | |
valid_task_keys = [child.id for child in tabs[0].children] | |
return_tabs = [gr.Tabs()] * len(tabs) | |
query_params = request.request.query_params | |
task_key = query_params.get("task", "overall") | |
if task_key not in valid_task_keys: | |
task_key = "overall" | |
return_tabs[0] = gr.Tabs(selected=task_key) | |
tabs_idx = valid_task_keys.index(task_key) + 1 | |
language_key = query_params.get("language", "english") | |
return_tabs[tabs_idx] = gr.Tabs(selected=language_key) | |
current_task_language = {"task": task_key, "language": language_key} | |
language_per_task = {task_key: language_key} | |
return return_tabs + [current_task_language, language_per_task] | |
block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task]) | |
search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
block.queue(max_size=10) | |
block.launch() | |
# Possible changes: | |
# Could add graphs / other visual content | |
# Could add verification marks | |
# Sources: | |
# https://huggingface.co/spaces/gradio/leaderboard | |
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard | |
# https://getemoji.com/ | |