mskov commited on
Commit
5be3ad4
·
1 Parent(s): ca7ae8f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -15
app.py CHANGED
@@ -2,19 +2,9 @@ import evaluate
2
  from evaluate.utils import launch_gradio_widget
3
  import gradio as gr
4
  from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
5
- import tempfile
6
 
7
- tmp = tempfile.NamedTemporaryFile()
8
-
9
-
10
- # Define the list of available models
11
- available_models = {
12
- "mskov/roberta-base-toxicity": "Roberta Finetuned Model"
13
- }
14
-
15
-
16
  # Create a Gradio interface with audio file and text inputs
17
- def classify_toxicity(audio_file, text_input, selected_model):
18
  # Transcribe the audio file using Whisper ASR
19
  if audio_file != None:
20
  whisper_module = evaluate.load("whisper")
@@ -26,7 +16,7 @@ def classify_toxicity(audio_file, text_input, selected_model):
26
  transcribed_text = text_input
27
 
28
  # Load the selected toxicity classification model
29
- toxicity_module = evaluate.load("toxicity", selected_model)
30
  #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
31
 
32
  toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
@@ -39,11 +29,10 @@ def classify_toxicity(audio_file, text_input, selected_model):
39
  with gr.Blocks() as iface:
40
  with gr.Column():
41
  aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
42
- with gr.Row():
43
  text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
44
  submit_btn = gr.Button(label="Submit")
45
- radio = gr.Radio(available_models, type="value", label="Select Model")
46
  out_text = gr.Textbox()
47
- submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, radio], outputs=out_text)
48
 
49
  iface.launch()
 
2
  from evaluate.utils import launch_gradio_widget
3
  import gradio as gr
4
  from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
 
5
 
 
 
 
 
 
 
 
 
 
6
  # Create a Gradio interface with audio file and text inputs
7
+ def classify_toxicity(audio_file, text_input):
8
  # Transcribe the audio file using Whisper ASR
9
  if audio_file != None:
10
  whisper_module = evaluate.load("whisper")
 
16
  transcribed_text = text_input
17
 
18
  # Load the selected toxicity classification model
19
+ toxicity_module = evaluate.load("toxicity", "mskov/roberta-base-toxicity")
20
  #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
21
 
22
  toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
 
29
  with gr.Blocks() as iface:
30
  with gr.Column():
31
  aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
 
32
  text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
33
  submit_btn = gr.Button(label="Submit")
34
+ with g.Column():
35
  out_text = gr.Textbox()
36
+ submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text], outputs=out_text)
37
 
38
  iface.launch()