mskov's picture
Update app.py
45d3377
raw
history blame
6 kB
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import whisper
import evaluate
from evaluate.utils import launch_gradio_widget
import gradio as gr
import torch
import classify
from whisper.model import Whisper
from whisper.tokenizer import get_tokenizer
from speechbrain.pretrained.interfaces import foreign_class
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
# pull in emotion detection
# --- Add element for specification
# pull in text classification
# --- Add custom labels
# --- Associate labels with radio elements
# add logic to initiate mock notificaiton when detected
# pull in misophonia-specific model
model_cache = {}
# Building prediction function for gradio
emo_dict = {
'sad': 'Sad',
'hap': 'Happy',
'ang': 'Anger',
'neu': 'Neutral'
}
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own
class_options = {
"racism": ["racism", "hate speech", "bigotry", "racially targeted", "racially diminutive", "racial slur", "ethnic slur", "ethnic hate", "pro-white nationalism"],
"LGBTQ+ hate": ["gay slur", "trans slur", "homophobic slur", "transphobia", "anti-LBGTQ+", "hate speech"],
"sexually explicit": ["sexually explicit", "sexually coercive", "sexual exploitation", "vulgar", "raunchy", "sexually demeaning", "sexual violence", "victim blaming"],
"misophonia": ["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"]
}
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
# Create a Gradio interface with audio file and text inputs
def classify_toxicity(audio_file, text_input, classify_anxiety):
# Transcribe the audio file using Whisper ASR
if audio_file != None:
transcribed_text = pipe(audio_file)["text"]
#### Emotion classification ####
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
else:
transcribed_text = text_input
if classify_anxiety != "misophonia":
#### Toxicity Classifier ####
toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
toxicity_score = toxicity_results["toxicity"][0]
print(toxicity_score)
#### Text classification #####
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
sequence_to_classify = transcribed_text
print(classify_anxiety, class_options)
candidate_labels = class_options.get(classify_anxiety, [])
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
print(classification_output)
#### Emotion classification ####
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
return toxicity_score, classification_output, emo_dict[text_lab[0]], transcribed_text
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
else:
model = whisper.load_model("large")
# model = model_cache[model_name]
# class_names = classify_anxiety.split(",")
class_names_list = class_options.get(classify_anxiety, [])
class_str = ""
for elm in class_names_list:
class_str += elm + ","
#class_names = class_names_temp.split(",")
class_names = class_str.split(",")
print("class names ", class_names, "classify_anxiety ", classify_anxiety)
# tokenizer = get_tokenizer(multilingual=".en" not in model_name)
tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large")
model = "whisper-large"
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
model=model,
class_names=class_names,
# class_names=classify_anxiety,
tokenizer=tokenizer,
)
audio_features = classify.calculate_audio_features(audio_path, model)
average_logprobs = classify.calculate_average_logprobs(
model=model,
audio_features=audio_features,
class_names=class_names,
tokenizer=tokenizer,
)
average_logprobs -= internal_lm_average_logprobs
scores = average_logprobs.softmax(-1).tolist()
return {class_name: score for class_name, score in zip(class_names, scores)}
return classify_anxiety
with gr.Blocks() as iface:
with gr.Column():
anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
with gr.Column():
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
submit_btn = gr.Button(label="Run")
with gr.Column():
out_text = gr.Textbox()
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class], outputs=out_text)
iface.launch()