File size: 2,062 Bytes
cbe4d4c
 
c8e54ed
 
28ff844
 
 
 
c8e54ed
 
 
 
 
 
 
 
6bfef5d
c8e54ed
bbd3701
f10b2fa
 
 
 
 
 
6bfef5d
c8e54ed
 
b65fb2a
 
1ff03d5
c8e54ed
 
 
1ff03d5
8cf8567
2724e1c
c8e54ed
aa687d6
 
 
 
 
 
 
 
 
 
 
c8e54ed
 
aa687d6
c8e54ed
 
 
 
 
30dbd25
c8e54ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import evaluate
from evaluate.utils import launch_gradio_widget
import gradio as gr
from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
import tempfile

tmp = tempfile.NamedTemporaryFile()

 
# Define the list of available models
available_models = {
    "mskov/roberta-base-toxicity": "Roberta Finetuned Model"
}
 
 
# Create a Gradio interface with audio file and text inputs
def classify_toxicity(audio_file, text_input, selected_model):
    # Transcribe the audio file using Whisper ASR
    if audio_file != None:
        whisper_module = evaluate.load("whisper")
        transcription_results = whisper_module.compute(uploaded=audio_file)
     
        # Extract the transcribed text
        transcribed_text = transcription_results["transcription"]
    else:
        transcribed_text = text_input
 
    # Load the selected toxicity classification model
    toxicity_module = evaluate.load("toxicity", selected_model)
    #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")

    toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
 
    toxicity_score = toxicity_results["toxicity"][0]
    print(toxicity_score)
    return toxicity_score, transcribed_text
    # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
 
input_block = gr.Row([
    gr.Column([
        gr.Audio(source="upload", type="filepath", label="Upload Audio File"),
        gr.Row([
            gr.Textbox(type="text", label="Enter Text", placeholder="Enter text here..."),
            gr.Button(label="Submit", type="submit")
        ])
    ]),
    gr.Radio(available_models, type="value", label="Select Model")
])

iface = gr.Interface(
    fn=classify_toxicity,
    inputs=input_block,
    outputs="text",
    live=True,
    title="Toxicity Classifier with ASR",
    description="Upload an audio file or enter text to classify its toxicity using the selected model.",
)

iface.launch()