File size: 2,553 Bytes
cbe4d4c
 
c8e54ed
1ae8e53
c8e54ed
53eb88c
 
 
 
 
 
 
28ff844
c8e54ed
53eb88c
c8e54ed
bbd3701
f10b2fa
 
 
 
 
 
6bfef5d
c8e54ed
 
e95ab8a
b65fb2a
1ff03d5
c8e54ed
 
 
1ff03d5
53eb88c
 
 
 
 
 
 
 
 
 
 
 
 
8cf8567
2724e1c
c8e54ed
33b1b5b
53eb88c
 
33b1b5b
ca7ae8f
 
335e90e
 
33b1b5b
53eb88c
30dbd25
c8e54ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import evaluate
from evaluate.utils import launch_gradio_widget
import gradio as gr
import torch
from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
# pull in emotion detection
# --- Add element for specification
# pull in text classification
# --- Add custom labels
# --- Associate labels with radio elements
# add logic to initiate mock notificaiton when detected
# pull in misophonia-specific model

# Create a Gradio interface with audio file and text inputs
def classify_toxicity(audio_file, text_input, classify_anxiety):
    # Transcribe the audio file using Whisper ASR
    if audio_file != None:
        whisper_module = evaluate.load("whisper")
        transcription_results = whisper_module.compute(uploaded=audio_file)
     
        # Extract the transcribed text
        transcribed_text = transcription_results["transcription"]
    else:
        transcribed_text = text_input
 
    # Load the selected toxicity classification model
    toxicity_module = evaluate.load("toxicity",  "facebook/roberta-hate-speech-dynabench-r4-target")
    #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")

    toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
 
    toxicity_score = toxicity_results["toxicity"][0]
    print(toxicity_score)

    # Text classification 

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

    classifiation_model = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
    
    sequence_to_classify = transcribed_text
    candidate_labels = classify_anxiety
    classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
    print(classification_output)


    return toxicity_score, transcribed_text
    # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
 
with gr.Blocks() as iface:
    with gr.Column():
        classify = gr.Radio(["racial identity hate", "LGBTQ+ hate", "sexually explicit", "misophonia"])
    with gr.Column():
        aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
        text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
        submit_btn = gr.Button(label="Run")
    with gr.Column():
        out_text = gr.Textbox()
    submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, classify], outputs=out_text)

iface.launch()