Spaces:
Runtime error
Runtime error
File size: 6,568 Bytes
5a48f05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Code taken from https://colab.research.google.com/drive/1s2eQlolcI1VGgDhqWIANfkfKvcKrMyNr
# Original code by @maximelabonne on Twitter (@mlabonne on HF)
# Apache 2.0 licensed (asked on X/Twitter)
#
# Changes:
#
# Jan 20, 2023: Ported to Gradio
import gradio as gr
from huggingface_hub import ModelCard, HfApi
import requests
import networkx as nx
from PIL import Image
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from collections import defaultdict
from networkx.drawing.nx_agraph import graphviz_layout
from IPython.display import clear_output
import io
from bokeh.io import show, output_notebook
from bokeh.plotting import figure, from_networkx
from bokeh.models import ColumnDataSource, LabelSet, HoverTool
from bokeh.transform import linear_cmap
from networkx.drawing.layout import spring_layout
def get_model_names_from_yaml(url):
"""Get a list of parent model names from the yaml file."""
model_tags = []
response = requests.get(url)
if response.status_code == 200:
model_tags.extend([item for item in response.content if '/' in str(item)])
return model_tags
def get_license_color(model):
"""Get the color of the model based on its license."""
try:
card = ModelCard.load(model)
license = card.data.to_dict()['license'].lower()
# Define permissive licenses
permissive_licenses = ['mit', 'bsd', 'apache-2.0', 'openrail'] # Add more as needed
# Check license type
if any(perm_license in license for perm_license in permissive_licenses):
return 'lightgreen' # Permissive licenses
else:
return 'lightcoral' # Noncommercial or other licenses
except Exception as e:
print(f"Error retrieving license for {model}: {e}")
return 'lightgray'
def get_model_names(model, genealogy, found_models=None):
"""Get a list of parent model names from the model id."""
model_tags = []
if found_models is None:
found_models = []
try:
card = ModelCard.load(model)
card_dict = card.data.to_dict() # Convert the ModelCard object to a dictionary
license = card_dict['license']
# Check the base_model in metadata
if 'base_model' in card_dict:
model_tags = card_dict['base_model']
# Check the tags in metadata
if 'tags' in card_dict and not model_tags:
tags = card_dict['tags']
model_tags = [model_name for model_name in tags if '/' in model_name]
# Check for merge.yml and mergekit_config.yml if no model_tags found in the tags
if not model_tags:
model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/merge.yml"))
if not model_tags:
model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/mergekit_config.yml"))
# Convert to a list if tags is not None or empty, else set to an empty list
if not isinstance(model_tags, list):
model_tags = [model_tags] if model_tags else []
# Add found model names to the list
found_models.extend(model_tags)
# Record the genealogy
for model_tag in model_tags:
genealogy[model_tag].append(model)
# Recursively check for more models
for model_tag in model_tags:
get_model_names(model_tag, genealogy, found_models)
except Exception as e:
print(f"Could not find model names for {model}: {e}")
return found_models
def find_root_nodes(G):
""" Find all nodes in the graph with no predecessors """
return [n for n, d in G.in_degree() if d == 0]
def max_width_of_tree(G):
""" Calculate the maximum width of the tree """
max_width = 0
for root in find_root_nodes(G):
width_at_depth = calculate_width_at_depth(G, root)
local_max_width = max(width_at_depth.values())
max_width = max(max_width, local_max_width)
return max_width
def calculate_width_at_depth(G, root):
""" Calculate width at each depth starting from a given root """
depth_count = defaultdict(int)
queue = [(root, 0)]
while queue:
node, depth = queue.pop(0)
depth_count[depth] += 1
for child in G.successors(node):
queue.append((child, depth + 1))
return depth_count
def create_family_tree(start_model):
genealogy = defaultdict(list)
get_model_names(start_model, genealogy) # Assuming this populates the genealogy
# Create a directed graph
G = nx.DiGraph()
# Add nodes and edges to the graph
for parent, children in genealogy.items():
for child in children:
G.add_edge(parent, child)
# Get max depth
max_depth = nx.dag_longest_path_length(G) + 1
# Get max width
max_width = max_width_of_tree(G) + 1
# Estimate plot size
height = max(8, 1.5 * max_depth)
width = max(8, 3.5 * max_width)
# Set Graphviz layout attributes for a bottom-up tree
plt.figure(figsize=(width, height))
pos = graphviz_layout(G, prog="dot")
# Determine node colors based on license
node_colors = [get_license_color(node) for node in G.nodes()]
clear_output()
# Create a label mapping with line breaks
labels = {node: node.replace("/", "\n") for node in G.nodes()}
# Draw the graph
nx.draw(G, pos, labels=labels, with_labels=True, node_color=node_colors, font_size=12, node_size=8_000, edge_color='black')
# Create a legend for the colors
legend_elements = [
Patch(facecolor='lightgreen', label='Permissive'),
Patch(facecolor='lightcoral', label='Noncommercial'),
Patch(facecolor='lightgray', label='Unknown')
]
plt.legend(handles=legend_elements, loc='upper left')
plt.title(f"{start_model}'s Family Tree", fontsize=20)
plt.figtext(0.5, 0.01, "Merge Family Tree. Created by Maxime Labonne, ported to Gradio by mrfakename. https://huggingface.co/spaces/mrfakename/merge-model-tree", ha="center", fontsize=10)
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def create_graph(mid):
return create_family_tree(mid)
with gr.Blocks() as demo:
model_id = gr.Textbox(label="HF Model ID", info="The model ID on the Hugging Face Hub. Example: leveldevai/MarcDareBeagle-7B", placeholder="username/model")
go = gr.Button("Display")
out = gr.Image(label="Graph", interactive=False)
go.click(create_graph, inputs=[model_id], outputs=[out])
demo.queue().launch() |