TTTS / ttts /gpt /dataset.py
mrfakename's picture
Add source code
4ee33aa
raw
history blame
4.45 kB
import os
import random
import torch
import torch.nn.functional as F
import torch.utils.data
from torch import LongTensor
from tqdm import tqdm
import torchaudio
from pypinyin import Style, lazy_pinyin
from ttts.gpt.voice_tokenizer import VoiceBpeTokenizer
import json
import os
def read_jsonl(path):
with open(path, 'r') as f:
json_str = f.read()
data_list = []
for line in json_str.splitlines():
data = json.loads(line)
data_list.append(data)
return data_list
def write_jsonl(path, all_paths):
with open(path,'w', encoding='utf-8') as file:
for item in all_paths:
json.dump(item, file, ensure_ascii=False)
file.write('\n')
class GptTtsDataset(torch.utils.data.Dataset):
def __init__(self, opt):
self.tok = VoiceBpeTokenizer('ttts/gpt/gpt_tts_tokenizer.json')
self.jsonl_path = opt['dataset']['path']
self.audiopaths_and_text = read_jsonl(self.jsonl_path)
def __getitem__(self, index):
try:
# Fetch text and add start/stop tokens.
audiopath_and_text = self.audiopaths_and_text[index]
audiopath, text = audiopath_and_text['path'], audiopath_and_text['text']
text = ' '.join(lazy_pinyin(text, style=Style.TONE3, neutral_tone_with_five=True))
text = self.tok.encode(text)
text = LongTensor(text)
# Fetch quantized MELs
quant_path = audiopath + '.melvq.pth'
qmel = LongTensor(torch.load(quant_path)[0])
mel_path = audiopath + '.mel.pth'
mel = torch.load(mel_path)[0]
wav_length = mel.shape[1]*256
split = random.randint(int(mel.shape[1]//3), int(mel.shape[1]//3*2))
if random.random()>0.5:
mel = mel[:,:split]
else:
mel = mel[:,split:]
except:
return None
#load wav
# wav,sr = torchaudio.load(audiopath)
# wav = torchaudio.transforms.Resample(sr,24000)(wav)
if text.shape[0]>400 or qmel.shape[0]>600:
return None
return text, qmel, mel, wav_length
def __len__(self):
return len(self.audiopaths_and_text)
class GptTtsCollater():
def __init__(self,cfg):
self.cfg=cfg
def __call__(self, batch):
batch = [x for x in batch if x is not None]
if len(batch)==0:
return None
text_lens = [len(x[0]) for x in batch]
max_text_len = max(text_lens)
# max_text_len = self.cfg['gpt']['max_text_tokens']
qmel_lens = [len(x[1]) for x in batch]
max_qmel_len = max(qmel_lens)
# max_qmel_len = self.cfg['gpt']['max_mel_tokens']
raw_mel_lens = [x[2].shape[1] for x in batch]
max_raw_mel_len = max(raw_mel_lens)
wav_lens = [x[3] for x in batch]
max_wav_len = max(wav_lens)
texts = []
qmels = []
raw_mels = []
wavs = []
# This is the sequential "background" tokens that are used as padding for text tokens, as specified in the DALLE paper.
for b in batch:
text, qmel, raw_mel, wav = b
text = F.pad(text, (0, max_text_len-len(text)), value=0)
texts.append(text)
qmels.append(F.pad(qmel, (0, max_qmel_len-len(qmel)), value=0))
raw_mels.append(F.pad(raw_mel,(0, max_raw_mel_len-raw_mel.shape[1]), value=0))
padded_qmel = torch.stack(qmels)
padded_raw_mel = torch.stack(raw_mels)
padded_texts = torch.stack(texts)
return {
'padded_text': padded_texts,
'text_lengths': LongTensor(text_lens),
'padded_qmel': padded_qmel,
'qmel_lengths': LongTensor(qmel_lens),
'padded_raw_mel': padded_raw_mel,
'raw_mel_lengths': LongTensor(raw_mel_lens),
'wav_lens': LongTensor(wav_lens)
}
if __name__ == '__main__':
params = {
'mode': 'gpt_tts',
'path': 'E:\\audio\\LJSpeech-1.1\\ljs_audio_text_train_filelist.txt',
'phase': 'train',
'n_workers': 0,
'batch_size': 16,
'mel_vocab_size': 512,
}
cfg = json.load(open('ttts/gpt/config.json'))
ds = GptTtsDataset(cfg)
dl = torch.utils.data.DataLoader(ds, **cfg['dataloader'], collate_fn=GptTtsCollater(cfg))
i = 0
m = []
max_text = 0
max_mel = 0
for b in tqdm(dl):
break