File size: 4,645 Bytes
176edce
 
 
 
 
53a0a45
0935162
7d3d47c
176edce
 
 
 
 
 
343fdaf
 
176edce
343fdaf
176edce
d7b4d7a
176edce
 
 
 
 
 
 
 
 
343fdaf
176edce
 
343fdaf
3515660
 
 
 
 
 
 
 
9bb95c8
 
3515660
 
176edce
3515660
 
 
 
176edce
343fdaf
3ec2621
 
 
 
016778b
 
3ec2621
 
 
7b9b23e
 
 
3ec2621
7b9b23e
 
 
 
 
3515660
 
 
 
cc95127
3515660
 
 
7b9b23e
 
 
 
 
3515660
7b9b23e
1124c49
 
3515660
1124c49
3515660
7b9b23e
 
 
 
3515660
343fdaf
3515660
3ec2621
 
3515660
 
3ec2621
3515660
3ec2621
 
 
 
016778b
 
1b0733f
343fdaf
3ec2621
 
3515660
aba7c6b
3ec2621
343fdaf
176edce
3ec2621
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
import huggingface_hub
from huggingface_hub import hf_hub_download


cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

import gradio as gr
import torch
from diffusers import FluxPipeline

torch.backends.cuda.matmul.allow_tf32 = True
huggingface_hub.login(os.getenv('HF_TOKEN'))
class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

def load_and_fuse_lora_weights(pipe, lora_models):
    for repo, file_path, lora_scale in lora_models:
        lora_weights_path = hf_hub_download(repo_id=repo, filename=file_path)
        pipe.load_lora_weights(lora_weights_path)
        pipe.fuse_lora(lora_scale=lora_scale)

# List of LoRA models and their corresponding scales
lora_models = [
    ("mrcuddle/Character_Design_Helper", "CharacterDesign-FluxV2.safetensors", 0.125),
    ("mrcuddle/live2d-model-maker", "LIVE2D-FLUX.safetensors", 0.125)
]

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)

# Load and fuse LoRA weights
load_and_fuse_lora_weights(pipe, lora_models)

pipe.to(device="cuda", dtype=torch.bfloat16)

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        <div style="text-align: center; max-width: 650px; margin: 0 auto;">
            <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
            <p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
        </div>
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Group():
                prompt = gr.Textbox(
                    label="Your Image Description",
                    placeholder="E.g., A serene landscape with mountains and a lake at sunset",
                    lines=3
                )

                # Hidden textbox for the preset prompt
                preset_prompt = gr.Textbox(
                    label="Preset Prompt",
                    value="live2d,guijiaoxiansheng,separate hand,separate feet,separate head,multiple views,white background,CharacterDisgnFlux,magic particles, multiple references,color pallete reference,simple background,upper body,front,from side",
                    visible=False
                )

                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        with gr.Row():
                            height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
                            width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)

                        with gr.Row():
                            steps = gr.Slider(label="Inference Steps", minimum=5, maximum=25, step=1, value=8)
                            scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=1, value=3.5)

                        seed = gr.Number(label="Seed (for reproducibility)", value=-1, precision=0)

                generate_btn = gr.Button("Generate Image", variant="primary", scale=1)

        with gr.Column(scale=4):
            output = gr.Image(label="Your Generated Image")


    def process_image(height, width, steps, scales, prompt, seed, preset_prompt):
        global pipe
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            # Concatenate the preset prompt with the user's input prompt
            full_prompt = f"{preset_prompt} {prompt}"
            return pipe(
                prompt=[full_prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]

    generate_btn.click(
        process_image,
        inputs=[height, width, steps, scales, prompt, seed, preset_prompt],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()