Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,645 Bytes
176edce 53a0a45 0935162 7d3d47c 176edce 343fdaf 176edce 343fdaf 176edce d7b4d7a 176edce 343fdaf 176edce 343fdaf 3515660 9bb95c8 3515660 176edce 3515660 176edce 343fdaf 3ec2621 016778b 3ec2621 7b9b23e 3ec2621 7b9b23e 3515660 cc95127 3515660 7b9b23e 3515660 7b9b23e 1124c49 3515660 1124c49 3515660 7b9b23e 3515660 343fdaf 3515660 3ec2621 3515660 3ec2621 3515660 3ec2621 016778b 1b0733f 343fdaf 3ec2621 3515660 aba7c6b 3ec2621 343fdaf 176edce 3ec2621 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
import huggingface_hub
from huggingface_hub import hf_hub_download
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import gradio as gr
import torch
from diffusers import FluxPipeline
torch.backends.cuda.matmul.allow_tf32 = True
huggingface_hub.login(os.getenv('HF_TOKEN'))
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
def load_and_fuse_lora_weights(pipe, lora_models):
for repo, file_path, lora_scale in lora_models:
lora_weights_path = hf_hub_download(repo_id=repo, filename=file_path)
pipe.load_lora_weights(lora_weights_path)
pipe.fuse_lora(lora_scale=lora_scale)
# List of LoRA models and their corresponding scales
lora_models = [
("mrcuddle/Character_Design_Helper", "CharacterDesign-FluxV2.safetensors", 0.125),
("mrcuddle/live2d-model-maker", "LIVE2D-FLUX.safetensors", 0.125)
]
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
# Load and fuse LoRA weights
load_and_fuse_lora_weights(pipe, lora_models)
pipe.to(device="cuda", dtype=torch.bfloat16)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
<p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
prompt = gr.Textbox(
label="Your Image Description",
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
lines=3
)
# Hidden textbox for the preset prompt
preset_prompt = gr.Textbox(
label="Preset Prompt",
value="live2d,guijiaoxiansheng,separate hand,separate feet,separate head,multiple views,white background,CharacterDisgnFlux,magic particles, multiple references,color pallete reference,simple background,upper body,front,from side",
visible=False
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
with gr.Row():
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
with gr.Row():
steps = gr.Slider(label="Inference Steps", minimum=5, maximum=25, step=1, value=8)
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=1, value=3.5)
seed = gr.Number(label="Seed (for reproducibility)", value=-1, precision=0)
generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
with gr.Column(scale=4):
output = gr.Image(label="Your Generated Image")
def process_image(height, width, steps, scales, prompt, seed, preset_prompt):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
# Concatenate the preset prompt with the user's input prompt
full_prompt = f"{preset_prompt} {prompt}"
return pipe(
prompt=[full_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
generate_btn.click(
process_image,
inputs=[height, width, steps, scales, prompt, seed, preset_prompt],
outputs=output
)
if __name__ == "__main__":
demo.launch()
|