mouaff25's picture
feat: initial project structure
0ae3227
raw
history blame
464 Bytes
import gradio as gr
from joblib import load
import numpy as np
from sklearn.pipeline import Pipeline
import pandas as pd
spam_classifier: Pipeline = load("./models/spam_classifier.joblib")
def greet(email_body: str) -> float:
model_input = pd.DataFrame([email_body], columns=["Message"])
prediction = spam_classifier.predict_proba(model_input)[0][1]
return prediction
demo = gr.Interface(fn=greet, inputs="text", outputs="number")
demo.launch()