mouaff25 commited on
Commit
0ae3227
·
1 Parent(s): ee5edd1

feat: initial project structure

Browse files
Files changed (5) hide show
  1. CHANGELOG.md +10 -0
  2. LICENSE +21 -0
  3. app.py +16 -0
  4. models/spam_classifier.joblib +3 -0
  5. requirements.txt +2 -0
CHANGELOG.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Changelog
2
+
3
+ ## [0.1.0] - 2023-09-25
4
+ ### Added
5
+ - Initial project structure
6
+ - Gradio app
7
+
8
+ ### Changed
9
+
10
+ ### Fixed
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Mouafak Dakhlaoui
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
app.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from joblib import load
3
+ import numpy as np
4
+ from sklearn.pipeline import Pipeline
5
+ import pandas as pd
6
+
7
+ spam_classifier: Pipeline = load("./models/spam_classifier.joblib")
8
+
9
+ def greet(email_body: str) -> float:
10
+ model_input = pd.DataFrame([email_body], columns=["Message"])
11
+ prediction = spam_classifier.predict_proba(model_input)[0][1]
12
+ return prediction
13
+
14
+ demo = gr.Interface(fn=greet, inputs="text", outputs="number")
15
+
16
+ demo.launch()
models/spam_classifier.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a5c22bf5e15e769b13aa3a2b4d1508ed33bbf8f7b41a0c7106fdfcc7d6eafae
3
+ size 526974
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ scikit-learn==1.3.1
2
+ gradio==3.44.4