Spaces:
Paused
Paused
import joblib | |
import sklearn | |
import pandas as pd | |
import numpy as np | |
loaded_rf = joblib.load("model_joblib") | |
Description=pd.read_csv("symptom_Description.csv") | |
severity=pd.read_csv("Symptom-severity.csv") | |
severity['Symptom'] = severity['Symptom'].str.replace('_',' ') | |
precaution = pd.read_csv("symptom_precaution.csv") | |
def predd(x,psymptoms): | |
#print(psymptoms) | |
psymptoms.extend([0] * (17-len(psymptoms))) | |
a = np.array(severity["Symptom"]) | |
b = np.array(severity["weight"]) | |
for j in range(len(psymptoms)): | |
for k in range(len(a)): | |
if psymptoms[j]==a[k]: | |
psymptoms[j]=b[k] | |
psy = [psymptoms] | |
pred2 = x.predict(psy) | |
disp= Description[Description['Disease']==pred2[0]] | |
disp = disp.values[0][1] | |
recomnd = precaution[precaution['Disease']==pred2[0]] | |
c=np.where(precaution['Disease']==pred2[0])[0][0] | |
precuation_list=[] | |
for i in range(1,len(precaution.iloc[c])): | |
precuation_list.append(precaution.iloc[c,i]) | |
combined_info = f"The Disease Name: {pred2[0]}\nThe Disease Description: {disp}\nRecommended Things to do at home:"+''.join([f'\n -{i}' for i in precuation_list]) | |
return combined_info |